Informe de CAMPAÑA

005-24 NO-2024-39498526-APN-DNI#INIDEP 15/04/2024

Evaluación de reclutas del Stock Sudpatagónico del calamar argentino. Febrero 2024

Código: EH-2024/02

Alejandro A. Pappi, Tomás Tapia Montagna, Julia M. Jacob, Gerardo Rodriguez, Eduardo E. Aguilar, Juliana Despós, M. Mercedes Laurentxena, Julio R. Sinconegui, Adrián A. Jove, Lucas Bento, Facundo Lopez, Emmanuel N. Zelarrayán y Gabriel E. Rossi

Dirección: Pesquerías de Invertebrados y Ambiente Marino

Área: Programa Pesquerías de Cefalópodos

Citar como:

Pappi AA, Tapia Montagna T, Jacob JM, Rodriguez G, Aguilar EE, Despos J, Laurentxena MM, Sinconegui JR, Jove AA, Bento L, Lopez F, Zelarrayán EN, Rossi GE. Evaluación de reclutas del Stock Sudpatagónico del calamar argentino. Febrero 2024. Inf Campaña INIDEP Nº 005/24, 23 pp.

Evaluación de reclutas del Stock Sudpatagónico del calamar argentino. Febrero 2024

Alejandro A. Pappi¹, Tomás Tapia Montagna¹, Julia M. Jacob¹, Gerardo Rodriguez¹, Eduardo E. Aguilar¹, Juliana Despos¹, M. Mercedes Laurentxena², Julio R. Sinconegui¹, Adrián A. Jove¹, Lucas Bento¹, Facundo Lopez¹, Emmanuel N. Zelarayán³ y Gabriel E. Rossi⁴

Nombre del buque: BIP. EDUARDO L. HOLMBERG

Código: EH-2024/02

Resumen

El presente informe muestra las actividades desarrolladas en la Campaña Evaluación de reclutas del Stock Sudpatagónico del calamar argentino (EH-02/24) por el Programa Pesquerías de Cefalópodos realizada entre los días 5 y 28 de febrero, en el área comprendida entre los 47° S y 51° S y las isobatas de 100 y 200 m. Se llevaron a cabo 42 lances de pesca de un total de 87 planeados. Se realizaron 30 estaciones oceanográficas con el propósito de analizar las características ambientales sobre la plataforma patagónica (temperatura, conductividad y presión) para la identificación de las principales masas de agua, frentes térmicos y salinos, y su relación con la distribución y abundancia total del calamar argentino. Durante el crucero se registraron señales acústicas en tiempo real durante las 24 horas. Durante los lances de pesca se obtuvieron 41 muestras de Illex argentinus que incluyeron la determinación del largo del manto (LM, mm), peso individual (g), sexo, estadio de desarrollo gonadal y grado de repleción estomacal. Se registraron también 42 muestras de Doryteuthis gahi que se sometieron al mismo muestreo que el calamar argentino. Los datos fueron grabados en las bases MUEH0224.dbf, PUEH0224.dbf, y MUESTRAS.xlsx. El análisis preliminar de la información indicó la presencia de un grupo de I. argentinus, compuesto por ejemplares inmaduros y en madurez incipiente entre 18 y 31 cm LM. La distribución de longitudes resultó unimodal; el 83% de los individuos machos se encontraron en madurez incipiente y el 70% de las hembras se encontraron en estadio de inmadurez gonadal. Durante este crucero se efectuó el muestreo de las principales especies de peces capturadas, que se grabaron en la base OSTEH0224.dbf, y se conservaron muestras para procesar en tierra, según el requerimiento de cada programa.

Palabras Clave

Calamar argentino, Subpoblación Sudpatagónica, evaluación, abundancia 2024

Objetivos principales

- Confirmar la distribución y áreas de concentración del Stock Sudpatagónico (SSP) de *I. argentinus* al sur de los 46°S.
- Estimar la biomasa (t) y la abundancia (número de individuos) del SSP por el método de área barrida.
- Estudiar las características poblacionales (estructura de tamaños, estadios de desarrollo sexual, etc.).

1

¹ Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP)

² Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

³ Armada Argentina

⁴ Prefectura Naval Argentina

- Obtener muestras de estómagos de calamar para estudiar la alimentación de *I. argentinus* y los cambios ocurridos en su dieta.
- Obtener parámetros ambientales (temperatura, salinidad) e identificar las principales masas de agua, frentes térmicos y salinos, y su relación con la distribución y abundancia estival del calamar.
- Contribuir al estudio de la distribución y abundancia relativa de los peces óseos Merluccius australis, Merluccius hubbsi, Macruronus magellanicus, Dissostichus eleginoides, Salilota australis, Micromesistius australis y Genypterus blacodes.
- Obtener muestras biológicas de peces (tamaños, peso individual, sexo, estadios de desarrollo sexual, otolitos, contenidos estomacales) para conocer la estructura poblacional de las especies investigadas.

Objetivos secundarios

- Determinar la distribución y abundancia relativa de Doryteuthis gahi en el área estudiada.
- Recolectar muestras de organismos bentónicos asociados al lecho marino.
- Registrar las señales acústicas, en tiempo real, durante la campaña.

Desarrollo de la campaña

Puerto, fecha y hora de zarpada - Puerto, fecha y hora de arribo.

Mar del Plata, 5 de febrero de 2024 15:30 horas - Mar del Plata, 28 de febrero de 2024 11:00 horas

Duración en días.

Veinticuatro (24) días navegados.

Condiciones hidro-meteorológicas durante la campaña.

Clima y mar regular a bueno en general; fue imposible operar durante cuatro jornadas y media debido a las malas condiciones climatológicas.

Situaciones imprevistas que modificaron el desarrollo de la campaña.

El día posterior a la zarpada, el 6 de febrero, ocurrió un desperfecto en el equipo de comunicaciones satelitales, el cual quedó inutilizable y, por lo tanto, permanecimos no solo sin comunicaciones sino también imposibilitados de obtener el pronóstico del tiempo, herramienta fundamental para una buena planificación de la derrota de las estaciones de trabajo.

El día 12 de febrero la enfermera a bordo le comunica al Sr. Capitán el pedido de su desembarco a la máxima brevedad posible, debido a la persistencia de una condición inflamatoria en sus ojos. Al momento, el buque permanecía "a la capa" y cuando las condiciones meteorológicas lo permitieron, se emprendió el viaje rumbo a la rada exterior de Puerto Deseado a la búsqueda de señal telefónica para comunicar la situación a las autoridades en INIDEP. Se arribó allí el día 13 a las 7 horas. Ese mismo día por la tarde se emprendió el viaje hasta la rada exterior de Comodoro Rivadavia, lugar donde el día

15/2 se realizó el trasbordo del personal de enfermería. Se recibió, también, un equipo para restaurar el servicio de internet satelital.

El día 16/2 hubo que permanecer trabajando cerca de la costa por alerta de temporal al día siguiente. Ya el día 18/2 se pudo retomar el diseño de lances planificados al sur del paralelo 48° de latitud Sur.

El día 25/2 el Jefe de máquinas comunica al Capitán y a este jefe científico que solo queda en funcionamiento uno de tres compresores de aire que alimentan al motor principal. El Jefe de máquinas explica que estos son utilizados para mantener el régimen de vueltas del motor y mantenerlo estable tanto en tareas de navegación como en tareas de pesca. Con un solo compresor, en caso que el motor principal se detuviera, no se puede volver a poner en marcha. Tampoco se puede mantener el régimen de vueltas necesarias para realizar tareas de pesca con el compresor remanente. Por lo tanto, por cuestiones de seguridad y operativas, se decide retornar a la ciudad de Mar del Plata y dar por finalizada la campaña.

Tripulación:

Personal perteneciente a la dotación náutica:

Daniel De Tomaso Capitán

Ricardo Cepa
José Arena
Cayetano Arcurio
Primer Oficial
Segundo Oficial
Contramaestre

Personal perteneciente a la dotación científico-técnica:

Alejandro Pappi Jefatura Científica

Tomás Tapia Montagna
Julia Jacob
Muestreo de Cefalópodos, cómputos
Muestreo de Calamar, cómputos

Gerardo Rodriguez
Muestreo de Calamar

Juliana Despos
Muestreo de Peces, cómputos

M. Mercedes Laurentxena Muestreo de Condrictios, cómputos

Eduardo E. Aguilar Muestreo de peces, Australes.

Julio R. Sinconegui Muestreo de peces, Merluza y Abadejo
Lucas Bento Muestreo de peces, Merluza y Abadejo

Adrián Jove
Asistente de Muestreo, recolección de Bentos

Facundo Lopez Operaciones
Gabriel Rossi Hidroacústica
Emmanuel Zelarrayán Oceanografía

Diseño de la campaña

El área total de investigación se extendió entre los paralelos de 46°S y 51°S, y las isobatas de 100 m y 400 m. El diseño de muestreo elegido para la evaluación de *I. argentinus* es el estratificado al azar. Se delimitaron 7 estratos, utilizando meridianos, paralelos y las isobatas de 100, 200 y 400 m. Los estratos

están divididos en unidades de muestreo de igual área (2,0' de latitud y 2,5' de longitud) entre los 46°S y 51°S.

La cantidad de lances a efectuar se determinó teniendo en cuenta los días de barco disponibles y el área total de investigación. El número de lances por estrato fue adjudicado sobre la base del tamaño relativo y la desviación estándar de la densidad en cada uno de ellos. Así, se estableció la realización de 87 lances de pesca de 15 minutos de duración en un área de 49.547,98 mn² (Figura 1; Tabla 1).

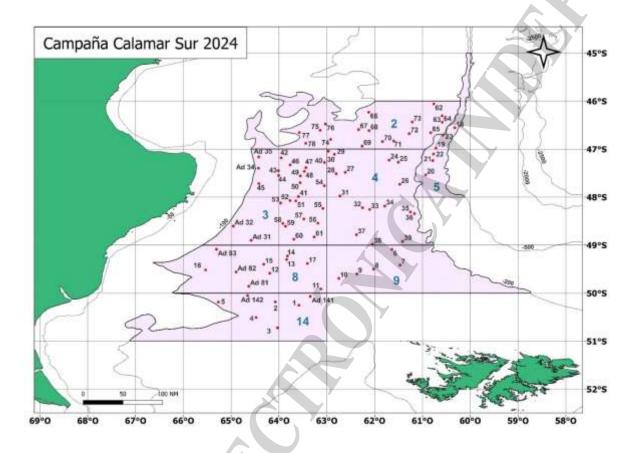


Figura 1: Distribución de los lances de pesca de arrastre de fondo según el plan de campaña EH-02/2024.

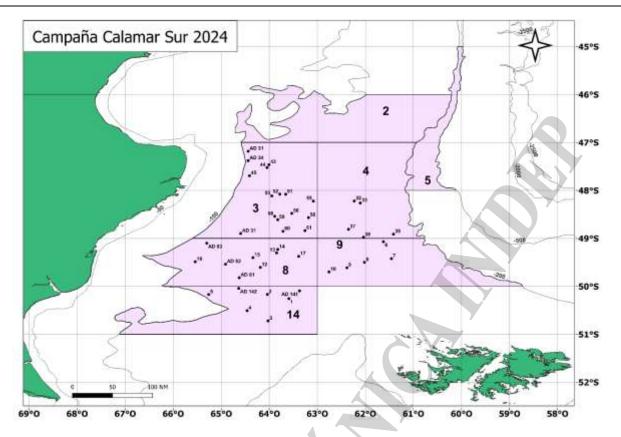


Figura 2: Distribución de los lances de pesca de arrastre de fondo realizados durante la campaña EH-02/2024.

Tabla 1. Área (mn²), número de cuadrículas y número de lances planificados por estrato.

ESTRATO	N° DE CUADRÍCULAS	ÁREA (mn²)	N° LANCES PROPUESTOS
2	2.640	9.094,09	17
3	2.790	9.322,96	26
4	2.810	9.399,60	16
5	560	1.911,59	6
8	2.270	7.370,95	10
9	1.810	5.865,63	5
14	2.070	6.583,16	7
TOTAL		49.547,98	87

Debido a las situaciones imprevistas mencionadas anteriormente, los días efectivos de trabajo durante la campaña se redujeron a diez, durante los cuales se realizaron 42 lances de arrastre de fondo entre los 47°S y los 51°S (Figura 2). En la **Tabla 2** se muestra la ubicación de los lances (latitud y longitud) y se señala la profundidad aproximada de cada uno de ellos. Los lances se efectuaron durante las horas del día.

Tabla 2. Número de lance, estrato, posición inicial, final y profundidad promedio.

	TOWN A MO	YYYD.		T / TI 1	Long.	Long.	D 0 111 17
FECHA	ESTRATO	WP	Lat. inicial	Lat. Final	inicial	final	Profundidad (m)
9/2/2024	9	6	49.0424	49.0523	61.3747	61.3795	146
9/2/2024	9	7	49.2537	49.2447	61.2746	61.2676	157
10/2/2024	9	8	49.3001	49.3088	62.0109	62.0191	148
10/2/2024	9	9	49.3681	49.3604	62.2303	62.2209	151
10/2/2024	9	10	49.4200	49.4124	62.4542	62.4440	144
10/2/2024	14	AD 141	50.0573	50.0492	63.2217	63.2128	139
11/2/2024	14	1	50.1543	50.1626	63.3549	63.3639	137
11/2/2024	14	2	50.1014	50.1099	64.0240	64.0160	131
11/2/2024	14	3	50.4327	50.4398	64.0152	64.0259	140
11/2/2024	14	4	50.3045	50.2968	64.2763	64.2670	127
16/2/2024	3	45	47.4171	47.4270	64.2473	64.2482	111
16/2/2024	3	44	47.3151	47.3052	64.0281	64.0325	109
16/2/2024	3	43	47.2787	47.2690	64.0041	64.0077	107
16/2/2024	3	AD 31	47.1099	47.1183	64.2632	64.2712	100
16/2/2024	3	AD 34	47.2278	47.2368	64.2638	64.2578	112
18/2/2024	8	AD 82	49.3240	49.3330	64.5469	64.5398	115
18/2/2024	8	AD 81	49.4932	49.5031	64.3756	64.3746	115
18/2/2024	14	AD 142	50.0258	50.0333	64.3821	64.3925	117
18/2/2024	14	5	50.1024	50.1125	65.1569	65.1561	113
19/2/2024	8	16	49.2928	49.3026	65.3247	65.3235	105
19/2/2024	8	AD 83	49.0601	49.0691	65.1804	65.1876	106
19/2/2024	3	AD 31	48.5397	48.5475	64.3581	64.3486	107
20/2/2024	8	15	49.2416	49.2516	64.2036	64.2047	117
20/2/2024	8	12	49.3633	49.3726	64.1118	64.1070	118
20/2/2024	8	13	49.1817	49.1721	63.5089	63.5047	123
20/2/2024	8	14	49.1385	49.1297	63.4940	63.4861	126
20/2/2024	8	17	49.2252	49.2331	63.2324	63.2420	137
21/2/2024	4	39	48.5481	48.5576	61.2493	61.2454	157
21/2/2024	4	38	48.5863	48.5805	62.0238	62.0362	140
21/2/2024	4	37	48.4865	48.4775	62.2105	62.2165	144
22/2/2024	3	58	48.3240	48.3339	63.5315	63.5295	115
22/2/2024	3	59	48.3671	48.3763	63.4948	63.4897	118
22/2/2024	3	60	48.5114	48.5197	63.4277	63.4185	119
22/2/2024	3	61	48.5033	48.4933	63.1545	63.1458	137
22/2/2024	3	56	48.3414	48.3333	63.1100	63.1015	134
24/2/2024	3	53	48.0698	48.0653	63.5690	63.5541	106
24/2/2024	3	52	48.0468	48.0459	63.4681	63.4529	105
24/2/2024	3	51	48.0475	48.0473	63.3948	63.3801	108
24/2/2024	3	55	48.1340	48.1242	63.0488	63.0493	135
24/2/2024	3	56	48.2878	48.2976	63.3187	63.3218	113
25/2/2024	4	32	48.1328	48.1400	62.1390	62.1293	144
25/2/2024	4	33	48.1587	48.1506	62.0642	62.0556	134

Actividades realizadas a bordo

Toma de datos y monitoreo de la operación de pesca

Responsable: Alejandro Pappi

Los lances de pesca fueron de 15 minutos de duración. En cada uno se registraron los siguientes parámetros:

Ambientales:

- Presión (milibares)
- Dirección y velocidad del viento (grados y nudos)
- Estado del mar (Escala de Beaufort)

Comportamiento del equipo de pesca:

- Cable filado (metros)
- Rumbo (grados)
- Posición (latitud GG:MM:cc, longitud GG:MM:cc)
- Velocidad de arrastre (nudos)
- Profundidad (metros)
- Abertura vertical (metros)
- Distancia entre portones (metros)
- Hora firme guinche
- Hora red en el fondo
- Hora virada
- Hora despegue del fondo
- Distancia recorrida en el arrastre (millas náuticas)

Datos de captura por especie en peso y número en cada lance de pesca

Responsable: Juliana Despos

En cada lance de pesca, luego de la separación y encajonamiento de las distintas especies, se registró su peso (kg) y número de individuos por kilogramo.

Muestreo bio-estadístico

Cefalópodos

Responsables: Alejandro Pappi y Tomás Tapia Montagna

Muestreadores: Julia Jacob, Gerardo Rodriguez.

Peces óseos

Responsable: Eduardo Aguilar

Muestreadores: Julio Sinconegui, Juliana Despos, Lucas Bento, Adrian Jove.

Condrictios

Responsable: M. Mercedes Laurentxena

Bentos

Responsable: Adrián Jove.

Registro de datos y control de captura y esfuerzo

Responsable: Tomás Tapia Montagna

Colaboración: Julia Jacob y Gerardo Rodriguez.

Se crearon, mediante la utilización de los programas *DATAMAR y EXCEL*, las siguientes bases de datos:

■ ESEH0224.dbf Estratos

PUEH0224.dbf
Datos Puente y captura por especie

■ MUEH0224.dbf Ej/kg por especie

MUESTRAS.xlsx Muestras Illex argentinus y Doryteuthis gahi

Registro de datos y control de los datos de muestras y sub-muestras de peces óseos y condrictios

Responsable: Juliana Despos y M. Mercedes Laurentxena

Se crearon las bases de datos:

MUEH0224.dbf

■ OSTEH0224.dbf

Hidroacústica

Registro y procesamiento de señales hidro-acústicas

Responsable: Gabriel Rossi

Oceanografía Física

Mediciones de temperatura y salinidad de superficie y toma de muestras de agua de mar con perfilador vertical CTD

Responsable: Emmanuel Zelarrayán

Operaciones

Asistencia de maniobras oceanográficas, puesta a punto y calibración de equipos de trabajo

Responsable: Facundo López.

Instrumental utilizado

Equipo de pesca

Red Engel para arrastre de fondo con las siguientes características:

Longitud de patentes (m): 100

Longitud de bridas (m): 48,5 / 50

Longitud del cuerpo de red sin la bolsa (m):	37
Longitud del cuerpo de red con la bolsa (m):	59
Longitud de la bolsa (m):	22
Relinga superior (m):	35,3
Relinga inferior (m):	50
Tamaño de malla en las alas (mm):	200
Tamaño de malla en la bolsa (mm):	103
Tipo de portones:	Polivalentes
Peso de los portones (kg):	1.200

Equipo de Hidroacústica

Ecosonda utilizada para la adquisición acústica

El equipo acústico consistió en una ecosonda científica SIMRAD EK-500 operando transductores en tres frecuencias simultáneas: 38, 120 kHz (split-beam) y 200 kHz (single-beam).

Monitoreo de desempeño de la red de pesca SIMRAD TV80 (Sensores PX)

El monitoreo del desempeño del arte de pesca se efectuó mediante el programa de telemetría acústica SIMRAD TV80, utilizando sensores PX.

CEFALÓPODOS

Muestreo bio-estadístico

Todos los cefalópodos capturados en cada lance de pesca fueron identificados, separados de la captura total y pesados en kilogramos. Se realizó el muestreo bio-estadístico de *I. argentinus y D. gahi*.

Illex argentinus

Se capturó *I. argentinus* en 41 de los 42 lances realizados (Tabla 3). El muestreo de calamar argentino consistió en la examinación de hasta un máximo de 150 ejemplares por lance de pesca. La actividad se llevó a cabo registrándose el largo del manto al mm inferior (LM), el peso total en gramos (PT), el sexo, el estadio de desarrollo gonadal (escala de 7 puntos para los machos y 8 puntos para las hembras) y el grado de repleción estomacal (escala de 4 puntos). En total, se muestrearon 2.543 individuos. Se extrajeron, pesaron y conservaron etiquetados, en alcohol 96°, estómagos, cuya repleción fue distinta de cero, para realizar estudios de alimentación.

Tabla 3. *Illex argentinus*. Número de lance consecutivo en el puente, número *Way-Point*, número de estrato, captura en kilogramos, peso de la muestra, número de ejemplares muestreados, y ejemplares por kilo en cada lance de pesca.

LANCE CONSECUTIVO	WP	ESTRATO	CAPTURA TOTAL	PESO_MUES	n	Ej/Kg
1	6	9	49.500	47.515	149	3.13585
2	7	9	68.603	43.900	150	3.41686
3	8	9	90.610	44.151	150	3.39743
4	9	9	118.314	44.101	150	3.40128
5	10	9	510.530	41.351	150	3.62748
6	AD 141	14	36.683	36.683	131	3.57114
7	1	14	57.600	39.172	150	3.82927
8	2	14	17.255	17.255	67	3.88293
9	3	14	5.628	5.628	19	3.37598
10	4	14	0.000	0.000	0	0.00000
11	45	3	1.854	1.854	9	4.85437
12	44	3	3.422	3.422	21	6.13676
13	43	3	0.468	0.468	4	8.54701
14	AD 31	3	0.718	0.718	3	4.17827
15	AD 34	3	0.375	0.375	5	13.33333
16	AD 82	8	7.278	7.278	35	4.80901
17	AD 81	8	3.605	3.605	17	4.71567
18	AD 142	14	12.094	12.094	50	4.13428
19	5	14	0.260	0.260	1	3.84615
20	16	8	1.633	1.633	6	3.67422
21	AD 83	8	1.350	1.350	5	3.70370
22	AD 31	3	0.404	0.404	3	7.42574
23	15	8	1.590	1.590	7	4.40252
24	12	8	2.721	2.721	12	4.41014
25	13	8	89.626	46.171	150	3.24879
26	14	8	36.788	36.788	142	3.85995
27	17	8	43.658	43.658	137	3.13803
28	39	4	198.906	46.776	150	3.20677
29	38	4	659.946	46.853	150	3.20150
30	37	4	199.619	47.676	150	3.14624
31	58	3	0.843	0.843	5	5.93120
32	59	3	0.758	0.758	6	7.91557
33	60	3	0.258	0.258	5	19.37984
34	61	3	13.699	13.699	60	4.37988
35	56	3	29.543	29.543	114	3.85878
36	53	3	1.757	1.757	17	9.67558
37	52	3	0.895	0.895	24	26.81564
38	51	3	1.563	1.563	49	31.34997
39	33	3	2.004	2.004	20	9.98004
40	56	3	0.958	0.958	45	46.97286
41	32	4	0.835	0.835	8	9.58084
42	33	4	3.920	3.920	17	4.33673

Distribución de capturas y abundancia relativa

Las capturas totales por lance variaron entre 0,258 y 659,946 kg (Figura 3). Respecto a las densidades de calamar en peso variaron entre 0,020 y 55,318 t mn⁻² (Figura 4), en tanto que las densidades en número lo hicieron entre 0,082 y 177,101 miles ind mn⁻² (Figura 5).

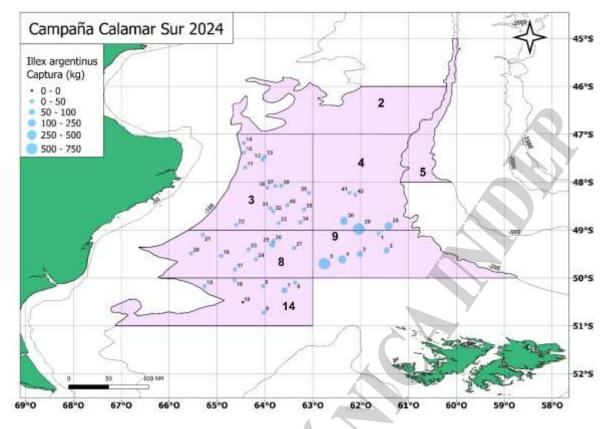
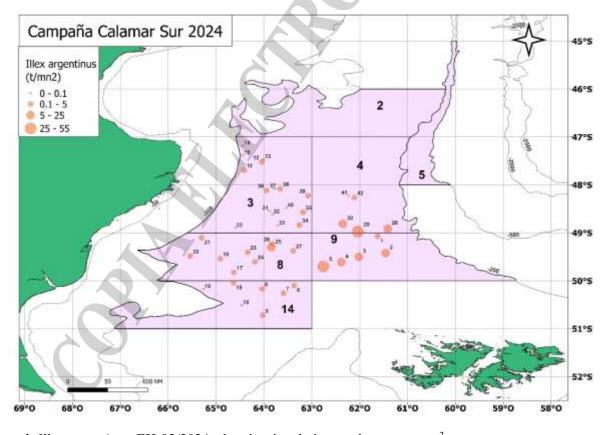



Figura 3. Illex argentinus. EH-02/2024, captura total por lance.

Figura 4. *Illex argentinus*. EH-02/2024, abundancia relativa por lance en *t mn*⁻².

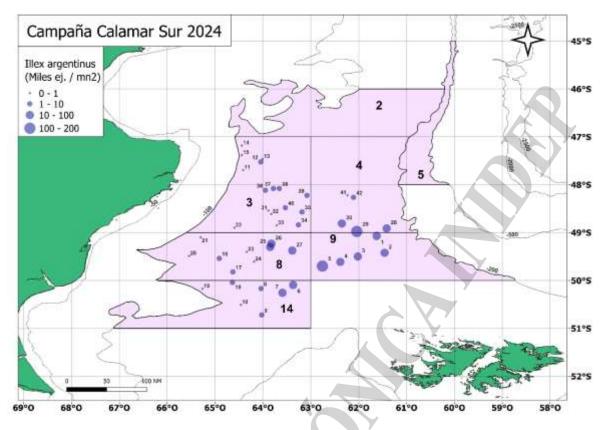


Figura 5. Illex argentinus. EH-02/2024, abundancia relativa por lance en miles ind. mn⁻².

Estructura Poblacional

Los tamaños medios de los individuos capturados variaron entre 115 y 268 mm LM y los pesos medios oscilaron entre 30 y 388 gramos. En los machos, los tamaños y pesos medios por lance oscilaron entre 115 y 267 mm LM y entre 30 y 406 g. En las hembras, los tamaños variaron entre 117 y 268 mm LM y los pesos entre 31 y 388 g (Tabla 4, Figura 6).

Tabla 4. *Illex argentinus*. Número de ejemplares, tamaño medio (LM, mm) y peso medio (Pt, g), por sexo y total en cada lance.

Lance		TOTAL		TOTAL MACHOS			H	EMBRAS	
Consec.	EJ	LM	PT	EJ	LM	PT	EJ	LM	PT
1	149	246.28	318.89	53	239	297	96	250	331
2	150	244.29	292.67	66	239	279	84	248	303
3	150	245.83	294.34	55	238	278	95	250	304
4	150	244.35	294.01	72	237	272	78	251	314
5	150	241.35	275.67	72	238	268	78	244	282
6	131	239.17	280.02	72	231	256	59	249	309
7	150	237.55	261.15	69	232	251	81	242	270
8	67	233.81	257.54	32	232	258	35	235	257
9	19	241.89	296.21	7	231	271	12	248	311
11	9	211.44	204.78	5	202	174	4	224	243
12	21	194.81	162.95	9	194	162	12	195	164
13	4	167.5	117	2	138	68	2	198	166
14	3	235	239.33	0	0	0	3	235	239
15	5	134.8	75	4	141	87	1	111	26

Lance		TOTAL		M	ACHOS		HI	EMBRAS	
Consec.	EJ	LM	PT	EJ	LM	PT	EJ	LM	PT
16	35	216.37	207.94	13	201	177	22	225	226
17	17	220.41	212.06	9	218	222	8	224	201
18	50	227.76	241.88	24	220	219	26	235	263
19	1	230	260	1	230	260	0	0	0
20	6	235.5	272.17	2	184	136	4	261	340
21	5	234.4	270	1	206	202	4	242	287
22	3	188	134.67	2	169	96	1	226	211
23	7	215.86	227.14	3	195	192	4	231	254
24	12	225.17	226.75	4	224	221	8	226	230
25	150	247.95	307.81	51	238	283	99	253	320
26	142	229.63	259.07	69	221	245	73	238	272
27	137	249.74	318.67	70	245	308	67	255	330
28	150	248.67	311.84	88	241	293	62	259	339
29	150	247.35	312.35	97	242	297	53	258	341
30	150	248.98	317.84	85	241	297	65	260	345
31	5	176.2	168.6	3	144	74	2	224	310
32	6	173	126.33	4	192	164	2	136	50
33	5	134.8	51.6	4	126	44	1	168	80
34	60	212.52	228.32	33	204	214	27	223	246
35	114	223.54	259.15	52	207	215	62	237	296
36	17	162.29	103.35	11	165	105	6	158	100
37	24	106.62	37.29	15	101	20	9	116	66
38	49	110.49	31.9	20	106	26	29	114	36
39	20	137.05	100.2	11	110	39	9	170	174
40	45	101.64	21.29	31	100	20	14	105	24
41	8	142.5	104.38	4	185	188	4	100	20
42	17	206.06	230.59	6	150	109	11	237	297
TOTAL	2543			1231			1312		

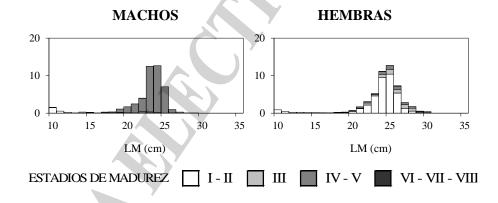


Figura 6. Illex argentinus. Distribución porcentual de tamaño, por sexo y estadio de madurez.

Nota: el tamaño mínimo registrado fue de 76 mm LM. Entre 76 y 99 mm LM se identificaron 84 individuos representando el 3,30% de los ejemplares muestreados; 53 fueron identificados como machos y 31 como hembras, todos juveniles en estadio de madurez 1.

En la **Tabla 5** se muestra la proporción de sexos y estadios de madurez. El 83% de los machos se encontraba en madurez incipiente (EM IV), en tanto que el 70% de las hembras estaba inmadura (EM II), lo cual permite identificar a estos calamares como correspondientes al SSP.

Tabla 5. Illex argentinus. Proporción de sexos y estadios de madurez

ESTADIO	MACHOS %	HEMBRAS %
1	9.34	7.09
2	1.95	69.89
3	2.36	12.42
4	83.43	5.79
5	2.76	4.42
6	0.16	0.38
N	1231	1312

Doryteuthis gahi

Se capturó *D. gahi* en los 42 lances realizados (Tabla 6). El muestreo consistió en la examinación de hasta un máximo de 50 ejemplares por lance de pesca. La actividad se llevó a cabo registrándose el largo del manto al mm inferior (LM), el peso total en gramos (PT), el sexo, el estadio de desarrollo gonadal y el grado de repleción estomacal (escala de 4 puntos). En total, se muestrearon 1.937 individuos.

Tabla 6. *Doryteuthis gahi*. Número de lance consecutivo en el puente, número *Way-Point*, número de estrato, captura en kilogramos, peso de la muestra, número de ejemplares muestreados, y ejemplares por kilo en cada lance de pesca.

Lance Consec.	WP	Estrato	Captura Kg	Peso_mues	n	EJ/kg
1	6	9	15.032	1.084	50	46.12546
2	7	9	30.49	0.901	50	55.4939
3	8	9	3.777	0.951	50	52.57624
4	9	9	13.734	0.934	50	53.53319
5	10	9	0.19	0.19	16	84.21053
6	AD 141	14	7.94	0.809	50	61.8047
7	1	14	8.09	0.988	50	50.60729
8	2	14	4.92	1.182	50	42.30118
9	3	14	20.4	0.834	50	59.95204
10	4	14	9.209	1.263	50	39.58828
11	45	3	0.364	0.353	23	65.15581
12	44	3	2.166	0.704	50	71.02273
13	43	3	3.399	0.802	50	62.34414
14	AD 31	3	0.516	0.516	20	38.75969
15	AD 34	3	1.471	0.68	50	73.52941
16	AD 82	8	0.754	0.754	50	66.313
17	AD 81	8	5.627	0.911	50	54.88474
18	/AD 142	14	4.474	0.934	50	53.53319
19	5	14	6.726	0.626	50	79.8722
20	16	8	9.288	0.828	51	61.5942
21	AD 83	8	5.018	0.992	50	50.40323
22	AD 31	3	0.954	0.859	50	58.20722
23	15	8	0.67	0.628	50	79.61783
24	12	8	3.95	0.73	50	68.49315
25	13	8	4.874	0.568	50	88.02817
26	14	8	3.75	0.712	50	70.22472
27	17	8	1.821	0.881	50	56.75369
28	39	4	4.803	0.883	50	56.62514
29	38	4	1.152	0.851	50	58.75441

Lance Consec.	WP	Estrato	Captura Kg	Peso_mues	n	EJ/kg
30	37	4	2.872	0.683	50	73.20644
31	58	3	0.034	0.034	1	29.41176
32	59	3	0.287	0.287	25	87.10801
33	60	3	0.617	0.61	50	81.96721
34	61	3	1.695	1.32	50	37.87879
35	56	3	1.901	0.844	50	59.24171
36	53	3	7.577	0.757	50	66.0502
37	52	3	1.626	0.738	50	67.75068
38	51	3	2.17	0.86	50	58.13958
39	55	3	1.5	0.993	50	50.32247
40	56	3	4.168	0.816	50	61.27451
41	32	4	5.96	1.226	50	40.78303
42	33	4	9.45	0.94	50	53.19149

Distribución de capturas y abundancia relativa

Las capturas totales por lance variaron entre 0,034 y 30,490 kg (Figura 7). Respecto a las densidades en peso variaron entre 0,003 y 2,424t mn⁻² (Figura 8), en tanto que las densidades en número lo hicieron entre 0,077 y 111,812 miles ind. mn⁻² (Figura 9).

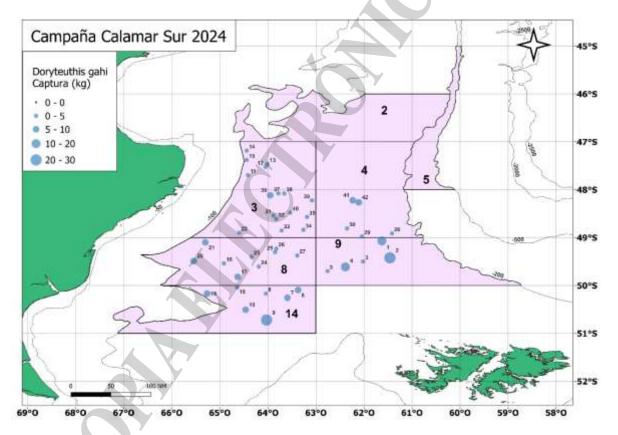


Figura 7. Doryteuthis gahi. EH-02/2024, captura total por lance en kg.

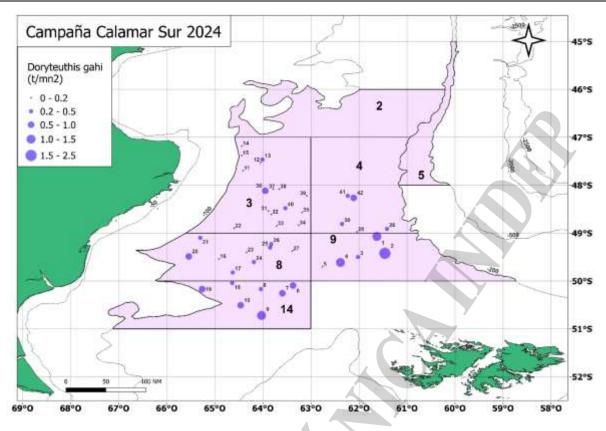
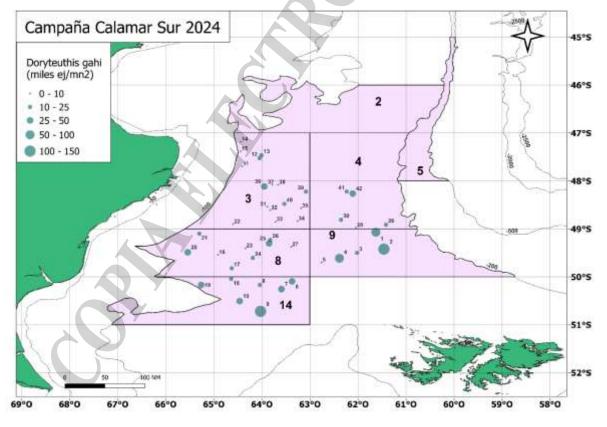
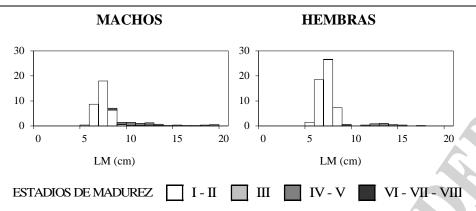



Figura 8. Doryteuthis gahi. EH-02/2024, abundancia relativa por lance en t mn⁻².

Figura 9. *Doryteuthis gahi*. EH-02/2024, abundancia relativa por lance en *miles ind. mn*⁻².



Estructura Poblacional

Los tamaños medios de los individuos capturados variaron entre 68 y 111 mm LM y los pesos medios oscilaron entre 11 y 34 gramos. En los machos, las tamaños y pesos medios por lance oscilaron entre 69 y 111 mm LM y entre 11 y 34 g. En las hembras, los tamaños variaron entre 65 y 94 mm LM y los pesos entre 11 y 30 g (Tabla 7, Figura 10).

Tabla 7. *Doryteuthis gahi.* Número de ejemplares, tamaño medio (LM, mm) y peso medio (Pt, g), por sexo y total en cada lance.

Lance		TOTAL		I	MACHOS		HE	MBRAS	
Consec.	EJ	LM	PT	EJ	LM	PT	EJ	LM	PT
1	50	82.62	18.02	10	82	18	40	83	18
2	50	89.06	21.68	14	94	25	36	87	20
3	50	84.98	19.02	25	90	21	25	80	17
4	50	82.28	18.68	13	105	33	37	74	14
5	16	70.19	11.88	7	75	13	9	67	11
6	50	75.32	16.18	13	90	26	37	70	13
7	50	78.14	19.76	15	96	32	35	70	15
8	50	82.98	23.64	25	83	25	25	83	22
9	50	76.94	16.68	19	85	23	31	72	13
10	50	90.4	25.26	30	94	29	20	84	20
11	23	75.78	15.35	11	72	13	12	80	18
12	50	72.54	14.08	29	72	13	21	74	15
13	50	74.68	16.04	20	77	17	30	73	15
14	20	91.95	25.8	12	98	30	8	83	20
15	50	70.52	13.6	21	73	14	29	69	13
16	50	77.12	15.08	15	77	14	35	77	15
17	50	81.24	18.22	30	85	20	20	76	15
18	50	79.7	18.68	23	80	18	27	80	19
19	50	68.92	12.52	24	73	14	26	65	11
20	51	78.49	16.24	23	80	17	28	77	15
21	50	83.3	19.84	15	90	25	35	81	18
22	50	76.5	17.18	24	86	24	26	67	11
23	50	74.1	12.56	20	76	14	30	73	12
24	50	75.16	14.6	22	77	16	28	74	14
25	50	70.12	11.36	18	71	12	32	70	11
26	50	73.86	14.24	22	75	14	28	73	14
27	50	81.6	17.62	26	84	19	24	79	17
28	50	81.34	17.66	18	85	19	32	79	17
29	50	80.84	17.02	32	80	17	18	82	18
30	50	73.6	13.66	28	74	14	22	73	13
31	1	111	34	1	111	34	0	0	0
32	25	70.88	11.48	14	71	11	11	71	12
33	50	70.54	12.2	21	69	11	29	72	13
34	50	93.18	26.8	44	93	26	6	94	30
35	50	75.36	16.88	34	75	16	16	77	19
36	50	74.54	15.14	29	75	15	21	73	15
37	50	75.58	14.76	28	77	15	22	74	14
38	51	77.22	16.86	28	78	17	23	77	16
39	50	80.66	19.86	27	83	22	23	78	17
40	50	77.72	16.32	17	80	17	33	77	16
41	50	90.8	24.52	36	91	24	14	91	26
42 TOTAL	50	82.34	18.8	29	80	17	21	86	22
TOTAL	1937			912			1025		

Figura 10. *Doryteuthis gahi.* Distribución porcentual de tamaños, por sexo y estadio de madurez, total y por estrato.

En la **Tabla 8** se muestra la proporción de sexos y estadios de madurez. El 86% de los machos y 93% de las hembras se encontraban inmaduros (EM I-II).

Tabla 8. Proporción de sexos y estadios de madurez

ESTADIO	MACHOS %	HEMBRAS %
1	54.71	55.8
2	31.03	37.66
3	2.74	1.85
4	10.42	0.78
5	1.1	3.9
N	912	1025

PECES ÓSEOS

Merluza y Fauna Acompañante

Capturas registradas

Se capturaron las siguientes especies, de acuerdo con el siguiente detalle, que enumera las capturas por especie en orden decreciente, como se muestra en la **Tabla 9.**

Tabla 9. Capturas por especie en EH-02/2024.

ESPECIE	Kg	n	Ocurrencia en nº de Lances
Merluccius hubbsi	3336.47	6291	32
Patagonotothen ramsayi	2811.66	2029	30
Genypterus blacodes	28.94	16	8
Cottoperca gobio	22.69	47	12
Congiopodus peruvianus	18.14	71	18
Stromateus brasiliensis	14.45	51	18
Sebastes oculatus	2.83	4	3
Salilota australis	1.36	4	3
Macruronus magellanicus	1.22	4	2
Iluocoetes sp.	0.58	1	1

Como puede apreciarse, la merluza común (*Merluccius hubbsi*), la nototenia de Ramsay (*Patagonotothen ramsayi*) y el abadejo manchado (*Genypterus blacodes*) fueron los osteictios que aparecieron con mayor frecuencia en los lances, aunque con distintos volúmenes de captura.

Muestreo biológico

Se realizaron muestras de tamaños de todas las especies de la tabla anterior.

Sub-muestras biológicas

Además, se realizaron sub-muestras con registro de longitud total, peso, sexo, estadio, y con extracción de pares de otolitos en las siguientes especies, en las cantidades que se consignan a continuación:

Tabla 10. Sub-muestras realizadas distinguidas por especie en EH-02/2024.

ESPECIE	Kg	n	Ocurrencia en nº de Lances
Merluccius hubssi	715,657	1616	16
Genypterus blacodes	18,646	12	7
Salilota australis	1,358	4	3
Macruronus magellanicus	0,192	1	1

Las sub-muestras se efectuaron de acuerdo a lo consignado en el "Plan De Crucero De Investigación. Evaluación De Reclutas Del Stock Sudpatagónico Del Calamar Argentino. Febrero 2024".

CONDRICTIOS

Sobre un total de 42 lances efectivos de pesca se capturaron un total de 11 especies de condrictios en 41 lances, mientras que sólo en el lance 31 no hubo especies de este grupo. La pintarroja *Schroederichthys bivius* fue la especie de condrictio con mayor abundancia de la campaña, representando el 49,5% del total de ejemplares capturados y el 20,1% del peso de la captura total. El recuento de especies capturadas y número de ejemplares se detalla en la **Tabla 11**.

Tabla 11. Especies, kilogramos y número de ejemplares muestreados de Condrictios en la campaña EH-02/2024.

ESPECIE	PESO EN KG	N. EJEMPLARES	LANCES
Schroederichthys bivius	47,02	104	24
Lamna nasus	36,00	1	1
Bathyraja brachyurops	30,73	21	12
Dipturus trachiderma	30,00	1	1
Dipturus chilensis	25,67	14	12
Squalus acanthias	21,97	24	17
Psammobatis normani	14,51	26	14
Bathyraja macloviana	14,28	10	8
Bathyraja magellanica	8,08	6	4
Bathyraja albomaculata	4,93	2	2
Psammobatis rudis	0,29	1	1
TOTAL	233,48	210	•

Se sub-muestrearon la totalidad de los ejemplares capturados, con la salvedad de 1 individuo de *Lamna nasus* y 1 individuo de *Dipturus trachiderma*, que fueron devueltos al mar con signos de vida favorables y sin heridas.

Nota: La especie *Dipturus chilensis* está listada tal como aparece en la base de datos del sistema *Datamar*, siendo su nombre científico actual *Zearaja brevicaudata*.

ESPECIES AUSTRALES

Se conservaron 4 ejemplares de la especie *Macruronus magellanicus* enteros según el requerimiento de genética genómica.

FAUNA BENTONICA

Se registró captura de bentos en 40 lances de los 42 realizados en la campaña. Se conservaron 9 muestras congeladas para descargar en tierra según requerimientos.

HIDROACÚSTICA

Ecosonda utilizada para la adquisición acústica

El equipo acústico consistió en una ecosonda científica SIMRAD EK-500 operando transductores en tres frecuencias simultáneas: 38, 120 kHz (split-beam) y 200 kHz (single-beam). La duración de pulso utilizada fue de 1 mseg en 38 y 120 kHz y de 0.6 en 200 kHz. La adquisición y post-procesamiento de los registros acústicos fue realizado a bordo mediante la utilización del programa Bergen Echo Integrator (BEI-500), el cual funcionó en una computadora de escritorio bajo plataforma Linux implementando una máquina virtual.

Muestreo acústico

La señal acústica fue registrada y visualizada en tiempo real durante las 24 horas al día. Toda la información recolectada fue almacenada en discos rígidos externos. El volumen total de información recolectada fue de 1,82 gigabytes.

Monitoreo de desempeño de la red de pesca SIMRAD TV80 (Sensores PX)

Se grabaron datos con ecosonda Simrad EK-500 en las frecuencias de 30, 120 y 200 Khz. Los mismos serán procesados en el Gabinete de Hidroacústica con el software LSSS para poder determinar las distintas respuestas en frecuencia de cada especie.

Se monitoreo y grabo la totalidad de los lances de pesca, pudiendo así ver el comportamiento de la red y de los portones. Se utilizó el sistema de telemetría Simrad TV-80 y sensores PX. El cual permitió conocer la apertura vertical y horizontal de la red.

Nota: Previo a la zarpada de la campaña se realizó la calibración de los sensores de movimientos de los sensores de los portones.

OCEANOGRAFÍA

Síntesis de actividades de Oceanografía Física

Febrero 2024

Sistema continuo de agua de mar, Termosalinógrafo (TSG)

Previo a la salida, se realizó el cambio de una de las válvulas de paso que perdían unas gotas durante la prueba de equipos.

En cuanto al equipo de adquisición de datos de temperatura y salinidad, éste funcionó correctamente.

Se realizaron mediciones de temperatura y salinidad de superficie a lo largo de toda la derrota utilizando un equipo de registro SBE 21 Termosalinógrafo marca *Sea Bird* con un intervalo de muestreo cada 30 segundos y flujo constante durante toda la navegación que fue ajustado en torno a los 60 l/min.

Cada dato adquirido por el instrumento fue georreferenciado con su correspondiente valor de posición (GPS), fecha y hora. El primer dia de navegación se presentaron inconvenientes de conectividad entre el GPS del Puente y la PC que recibe los datos del Termosalinógrafo. El inconveniente se resolvió a los pocos minutos.

Se tomaron 37 muestras de agua para la calibración de salinidad del termosalinógrafo.

Perfilador vertical CTD

El equipo e instrumental no presentó inconvenientes que no pudieran solucionarse a bordo, tanto en su comunicación como en la adquisición de datos, aún en profundidades de 160 metros, profundidad máxima de arriado del CTD en esta campaña. Se observaron dificultades de comunicación en algunas estaciones producto de un conflicto de GPS y al switch magnético que habilita al instrumento a la adquisición de datos. Esto solo produjo el retraso en unos minutos del inicio de maniobra, ya que estos problemas fueron de solución relativamente sencilla.

Las tomas de agua de fondo mediante botella Niskin y mensajero se realizaron sin novedad, salvo en una estación en particular (E.G. 25) donde la botella Niskin volvió con una rotura cerca del botón disparador, por lo cual no se puede asegurar que la muestra no se haya mezclado en el ascenso. Para las siguientes estaciones, se descartó esta botella Niskin y se utilizó otra de repuesto.

Las mediciones de presión, temperatura y conductividad se realizaron con un CTD marca *Sea Bird*, modelo SBE 25, provisto de sensores de temperatura y conductividad, y una bomba para obtener flujo de circulación constante de agua en los sensores principales. El CTD fue configurado para registrar datos con una frecuencia de muestreo de 8 datos por segundo. Además, se instaló, un sensor auxiliar de fluoroscencia marca *SeaPoint* configurado con una ganancia de 10X (15µg/l).

Se realizaron un total de 31 perfiles CTD y muestras de agua de fondo, georreferenciado con su correspondiente valor de posición (GPS), fecha y hora.

Resultados preliminares

El análisis preliminar de la información indicó la presencia de un solo grupo de *I. argentinus* correspondiente a la población Sudpatagónica, compuesto por ejemplares inmaduros y en madurez incipiente entre 18 y 31 cm LM. La distribución de longitudes resultó *unimodal*; el 83% de los individuos machos se encontraron en madurez incipiente y el 70% de las hembras en estadio de inmadurez gonadal.

Conclusiones

Las jornadas de trabajo efectivas en tareas de investigación fueron diez, durante las cuales se completó el 48% de los lances planificados. Luego del replanteamiento de prioridades realizado el día 20 como consecuencia de los hechos acaecidos hasta ese momento, se realizaron 15 lances en tres días hasta que se decidió la finalización de la campaña por las fallas en dos de los tres compresores de aire que alimentan al motor principal del buque. De este modo, faltaron dos jornadas de trabajo para completar los lances pendientes de los estratos 4 y 5.

Agradecimientos

Se destaca la excelente predisposición y profesionalismo de toda la tripulación, tanto científica como de marinería y puente, a los efectos de afrontar los desafíos diarios del trabajo a bordo.