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Oregon Department of Fish and Wildlife  
Marine Resources Program 
Semi-annual update on Oregon Dungeness Crab Commission Fishery Improvement (FIP) work plan 
Assessment Period: February 2023 – July 2023 
Report Date: August 2023 

Goal/Performance 
Indicator Actions Due Date Responsibilities Progress 

2. Identify the main
non-target species
and provide
information on the
status of these
species.

PI 2.1.3, 2.2.3 

A. Assess the amount
(weight) of bait used by species
in the fishery each year and
identify which species are
actively managed (i.e. for
management targets such as
an LRP).
B. Provide available stock
status information on bait 
species that account for 5% or 
more of the total catch (by 
weight) in the fishery. 

C. Provide encounter
rates and/or catch data
(numbers) for out of scope
species (non-ETP amphibians,
reptiles, birds, mammals, e.g.
orange sea pen, pelagic
cormorant).

Feb 2024 

Feb 2024 

Aug 2024 

Troy Buell 
(ODFW) 

Troy Buell 
(ODFW) 

Troy Buell 
(ODFW) 

A and B - ODFW continues to process and 
enter crab logbook data which provides 
information on bait use in the fishery. ODFW 
has developed and finalized a bait survey 
questionnaire targeted at crab bait dealers. 
ODFW met with ODCC and WCSPA staff to 
discuss the questionnaire and get input on 
specific contacts in the industry to reach out to 
for bait information. ODFW made initial email 
contact with each of the bait dealers letting 
them know about the project and plans to reach 
out to them soon to get more specific 
information about the species and quantities of 
crab bait that they sell for use in the Oregon 
commercial crab fishery.  

C – ODFW is on track to complete assessment 
of in-house crab fishery bycatch data collected 
during pre-season and in-season ride-along 
trips, by August 2024.  

3. Demonstrate that
the main non-target
species are above
biological based
limits

PI 2.1.1, 2.2.1 

A. For species that
account for 5% or more of the
total catch (if any) and have
management targets (such as
an LRP), provide annual stock
status information over the past
10-15 years relative to the
target.

Aug 2023 
Proposed 
Feb 2024 

Troy Buell 
(ODFW) 

A and B - ODFW continues to process and 
enter crab fish ticket data which documents all 
species commercially landed during operation 
of the fishery. ODFW was not able to complete 
this task as planned for Aug 2023 due to 
multiple staffing changes affecting the crab 
program and the need to focus the limited crab 
staff capacity on other priorities, many of which 
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B.    For species that 
account for 5% or more of the 
total catch (if any) and do not 
have management targets and 
all out of scope species, provide 
available abundance trend 
information (catch or CPUE 
data, observer data, abundance 
surveys, etc). 

  Aug 2024 Troy Buell 
(ODFW) 

are associated with performance indicators 5, 6 
and 10.  
 
ODFW can complete these assessments by 
February 2024 (A) and August 2024 (B). 

4. Demonstrate 
that there is a strategy 
in place that is 
designed to maintain 
the main non-target 
species at sustainable 
levels. 
 
PI 2.1.2 and 2.2.2 

A. For species that 
account for 5% or more of the 
total catch (if any) describe the 
strategy used to maintain these 
species at or above biological 
based limits or if none, develop 
and implement such a strategy. 
B. For species that 
account for 5% or more of the 
total catch (if any) provide an 
objective rationale and 
evidence for why the above 
strategy will work based on 
some direct information the 
UoA and/or species involved. 

Aug 2025 
 
 
 
 
 
 
 

Aug 2025 

Troy Buell 
(ODFW) 

 
 
 
 

 
 

Troy Buell 
(ODFW) 

A and B - ODFW continues to process and 
enter crab fish ticket data which documents all 
species commercially landed during operation 
of the fishery. ODFW is on track to complete 
assessment by August 2025. 

5.      Provide 
evidence that the 
fishery does not 
hinder recovery of 
ETP species. 
 
PI 2.3.1 

A. Continue to participate 
in and support the Oregon 
Whale Entanglement Working 
Group and/or the Crab Advisory 
Group (OWEWG) to develop 
short- and long-term options for 
reducing whale entanglements 
in Dungeness crab fishing gear. 
 
 
 
 
 
 
 

Ongoing 
(through Aug 
2025) 
 
 
 
 
 
 
 
 
 
 
 
 

Executive Director 
(TBD) 

(ODCC) 
 
 
 
 
 
 
 
 
 
 
 
 

A - ODFW convened a meeting of the Oregon 
Entanglement Advisory Committee (OEAC), a 
stakeholder advisory group, in March 2023. The 
purpose of the group is to provide ODFW with 
information and broad perspectives from a 
range of stakeholders on strategies to support 
the co-occurrence of economically viable fixed 
gear fisheries and thriving marine life 
populations off Oregon. The purpose of the 
March meeting was to discuss the newly 
published OR whale distribution modeling 
efforts and the evaluation of the late-season 
marine life risk reduction measures adopted in 
2020. All information from this meeting is on our 
website here.  

https://www.dfw.state.or.us/MRP/shellfish/commercial/crab/whale_entanglement.asp


3 

B. Continue research to
monitor whale distribution off
the Oregon coast to identify
whale hotspots.

C. Continue to develop the
Conservation Plan for
endangered and threatened
whales.

Ongoing 
(through at 
least Aug 
2021) 

Aug 2025 

Leigh Torres 
(OSU) 

Executive Director 
(TBD) 

(ODCC) and 
Troy Buell 
(ODFW) 

B – Within this reporting period, ODFW and 
OSU’s manuscript on factors influencing overlap 
between the fishery and rorqual whales was 
published in the journal of Biological 
Conservation found here. This was the second 
published paper resulting from the first Section 
6 Species Recovery Grant funded project to 
investigate the co-occurrence of large whales 
and the crab fishery. ODFW and OSU also have 
been working on a final progress report to 
NMFS that summarizes all the work done 
throughout the first phase of this project which 
will be submitted to NMFS by October 28, 2023.  

Also in this reporting period, ODFW and OSU 
continued work on a second Section 6 grant 
funded project to continue the aerial whale 
surveys and expand on the initial modeling 
efforts for investigation of co-occurrence of 
whales and the crab fishery off Oregon. The 
most recent progress report to NMFS 
summarizing this work is included as 
Attachment A. 

C – ODFW developed a regulatory exhibit to the 
Oregon Fish and Wildlife Commission 
proposing maintaining and enhancing Oregon’s 
primary marine life entanglement risk reduction 
measures. These measures are the foundation 
of the department’s Conservation Plan to 
reduce the risk of endangered and threatened 
whale entanglement in Oregon crab gear. All 
the materials for the exhibit are located here.  

https://www.sciencedirect.com/science/article/pii/S0006320723000897
https://www.dfw.state.or.us/agency/commission/minutes/23/08_Aug/index.asp
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6. Demonstrate 
that there is a strategy 
in place that is 
designed to ensure 
the fishery does not 
pose a risk of serious 
or irreversible harm to 
the habitats. 
 
PI 2.4.2 

A. Develop and implement 
new technologies to monitor 
crab vessel locations and 
compliance with closed areas. 

  Aug 2025 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Executive Director 
(TBD) 

(ODCC) 
 
 
 
 

 

A - ODFW worked to extend the contract with a 
software developer in this reporting period to 
enhance the integrated vessel tracking 
electronic logbook system based on ODFW and 
user feedback from the initial pilot of the product 
during the 2022-23 crab season. The extension 
of this contract is through June 2023 and the 
enhanced software application and data flow 
will be piloted in the upcoming 2023-24 crab 
season. 
 
ODFW remains committed to working with 
industry to test electronic monitoring (EM) 
systems for vessel tracking and developing 
procedures for how systems can be used to 
provide near real-time fishery data by the 2026-
27 crab season (see Section 5.3.3.3 starting on 
page 94 of the draft CP titled “Electronic 
Monitoring”). 

7. Demonstrate 
that Information is 
adequate to determine 
the risk posed to the 
habitat by the fishery. 
 
PI 2.4.3 

A. Continue research and 
monitoring of coastal habitats 
identified in the Oregon 
Nearshore Strategy, including: 
• Survey of seafloor structures 
and habitat composition 
• Examination of species, 
communities, and habitat 
relationships to habitat 
monitoring priorities. 

Ongoing 
(through Aug 

2025) 

Scott Marion 
(ODFW) 

A - ODFW conducted a fishery-independent 
survey of habitat condition and fish and 
invertebrate communities in an important 
commercial fishing region. Transects were 
conducted using a stereo video sled  in the 
recently re-opened bottom trawl RCA (Rockfish 
Conservation Area) in the vicinity of Heceta 
Bank.  
 
Additionally, nearshore shallow rocky reef 
habitats in previously un-mapped regions near 
Seal Rock were surveyed using a multibeam 
sonar system. Finally, video transect surveys 
assessing fish and invertebrate habitat 
utilization were conducted in the Cascade Head 
Marine Reserve and associated comparison 
areas using a small ROV. 

 
10. Demonstrate that 
monitoring, control 
and surveillance 

A. Develop and implement 
new technologies to streamline 
logbook submittals and to 

Aug 2025 
 
 

Executive Director 
(TBD) (ODCC) 

Troy Buell (ODFW) 

A - ODFW worked to extend the contract with a 
software developer in this reporting period to 
enhance the integrated vessel tracking 

https://www.dfw.state.or.us/MRP/shellfish/commercial/crab/docs/2021/Public_CP_DRAFT_8.18.21.pdf
https://www.dfw.state.or.us/MRP/shellfish/commercial/crab/docs/2021/Public_CP_DRAFT_8.18.21.pdf
https://www.dfw.state.or.us/MRP/shellfish/commercial/crab/docs/2021/Public_CP_DRAFT_8.18.21.pdf
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mechanisms ensure 
the management 
measures in the 
fishery are enforced 
and complied with. 
 
PI 3.2.3 

monitor compliance with closed 
or restricted fishing areas 
(marine reserves).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. Work with fishermen to 
educate them on the 
importance of reporting whale 
entanglements. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

electronic logbook system based on ODFW and 
user feedback from the initial pilot of the product 
during the 2022-23 crab season. The extension 
of this contract is through June 2023 and the 
enhanced software application and data flow 
will be piloted in the upcoming 2023-24 crab 
season.  
 
ODFW remains committed to working with 
industry to test electronic monitoring (EM) 
systems for vessel tracking and developing 
procedures for how systems can be used to 
provide near real-time fishery data by the 2026-
27 crab season (see Section 5.3.3.3 starting on 
page 94 of the draft CP titled “Electronic 
Monitoring”).). 
 
B. In this reporting period, ODFW convened a 
meeting of the Oregon Entanglement Advisory 
Committee (OEAC), a stakeholder advisory 
group, in March 2023. The purpose of the group 
is to provide ODFW with information and broad 
perspectives from a range of stakeholders on 
strategies to support the co-occurrence of 
economically viable fixed gear fisheries and 
thriving marine life populations off Oregon. The 
purpose of the March meeting was to discuss 
the newly published OR whale distribution 
modeling efforts and the evaluation of the late-
season marine life risk reduction measures 
adopted in 2020. All information from this 
meeting is on our website here.  
 
ODFW developed and widely distributed a 
marine life fleet advisory in May 2023 due to the 
anticipation of elevated fishery effort into May. 
This notice is on our website here.  
 

 

https://www.dfw.state.or.us/MRP/shellfish/commercial/crab/docs/2021/Public_CP_DRAFT_8.18.21.pdf
https://www.dfw.state.or.us/MRP/shellfish/commercial/crab/docs/2021/Public_CP_DRAFT_8.18.21.pdf
https://www.dfw.state.or.us/MRP/shellfish/commercial/crab/docs/2021/Public_CP_DRAFT_8.18.21.pdf
https://www.dfw.state.or.us/MRP/shellfish/commercial/crab/whale_entanglement.asp
https://www.dfw.state.or.us/MRP/shellfish/commercial/crab/whale_entanglement.asp


NOAA Species Recovery Grant Semi-Annual 
Progress Report 
Grant number: NA22NMF4720105 

Project title: Enhancing Co-occurrence Assessment of Whales and Fishing Gear in 
Oregon Waters through Incorporation of Prey Data and Residency Analysis 

Grantee name: Oregon Department of Fish and Wildlife 

Contact information for project managers: 

Troy Buell 
troy.v.buell@ odfw.oregon.gov 
541-861-8135

Kelly Corbett 
kelly.c.corbett@odfw.oregon.gov 
541-270-5083

Dates of the award period: 7/1/2022-6/30/2025 

Dates covered by the progress report: 1/1/2023-6/30/2023 

Description of the tasks scheduled for the reporting period and tasks accomplished 
during the reporting period: 

As described in the project proposal, the Oregon Department of Fish and Wildlife 
(ODFW) planned for most of the work under this award to be conducted by Oregon 
State University (OSU) under an Intergovernmental Agreement (IGA) establishing a 
contractual relationship between the two parties, which was executed on August 5, 
2022. This report addresses tasks scheduled during the reporting period as outlined in 
Figure 3. Milestone timeline of proposed project of the project proposal. 

ATTACHMENT A

mailto:troy.v.buell@odfw.oregon.gov
mailto:troy.v.buell@odfw.oregon.gov
mailto:kelly.c.corbett@odfw.oregon.gov


Data collection and compilation 

Step 1: Vessel-based endangered species survey and prey data collection 

Several ship-based surveys were conducted during this reporting period. Data were also 
acquired a posteriori from other cruises conducted by OSU’s Marine Mammal Institute 
(MMI) in 2022 and 2023. Ship-based survey methods are described by Derville et al.
2022.

One marine mammal observer (Craig Hayslip) was onboard the R/V Bell M. Shimada for 
the May Northern California Current (NCC) cruise as part of OSU’s collaboration with 
NOAA (chief scientist: Jennifer Fisher) and funded by this award. The cruise totaled 13 
days of survey and 126 baleen whale groups observed (including 102 validated sightings 
on-effort). Validated sightings of baleen whales included (in number of individuals): 17 fin 
whales, 123 humpback whales, and 28 unidentified baleen whales. Among the photos 
that were collected during this cruise and processed so far, 7 humpback whales were 
photo-identified. 

Moreover, OSU/MMI supplemented the dataset currently available for this project with 
distance sampling data collected as part of the MOSAIC project (Marine Offshore Species 
Assessment to Inform Clean Energy; funded by the US Department of Energy). MOSAIC 
cruises are led by the MMI of OSU and cover continental shelf and slope waters of Oregon 
and northern California. These cruises were conducted onboard the R/V Pacific Storm in 
August 2022 (10 days), October 2022 (6 days) and April 2023 (10 days), for a total of 26 
days of effort. Among the many cetacean species observed across these three surveys, 
a total of 520 baleen whale groups were observed (including 475 validated sightings on-
effort). Validated sightings of baleen whales include (in number of individuals): 48 fin 
whales, 41 blue whales, 413 humpback whales, 11 gray whales, one Sei whale, and 197 
unidentified baleen whales. Over these cruises, 36 humpback whales were photo-
identified. 

Finally, OSU conducted three days of effort at sea onboard the R/V Pacific Storm as part 
of the STEM at Sea cruises (funded by Oregon Sea Grant and NOAA award 
NA22NMF4690373). Surveys were conducted on the continental shelf and slope off 
Newport, OR. During portions of the cruises when distance sampling effort was 
conducted, 21 baleen whale groups were observed, including 20 validated sightings. 
Validated sightings of baleen whales include (in number of individuals): 2 fin whales, 10 
humpback whales, one gray whales, and 10 unidentified baleen whales. Over all three 
days of survey (including but not limited to distance sampling survey), fourteen humpback 
whales were photo-identified during these cruises and will provide data for the steps 17 
and 18. 

Step 2: Endangered species helicopter transects 



Monthly helicopter surveys of Oregon coastal waters were continued through a 
partnership with the United States Coast Guards (USCG) during this reporting period. 
Four 150 nm transects were planned to be flown each month out of USCG stations in 
North Bend (NB), Newport and Astoria/Warrenton, weather permitting. Survey methods 
are described by Derville et al. 2022. 

A total of 17 cetacean surveys have been conducted aboard USCG helicopters since 
January 1, 2023 (Table 1). As of June 30, 2023, OSU conducted the following number of 
complete surveys: NB-South = 3 (3.3 hours of effort); NB-North = 3 (4.7 hours of effort); 
Newport = 6 (9.3 hours of effort); Warrenton = 5 (5.8 hours of effort). 

During these surveys, a total of 6 different species of cetaceans were recorded: fin 
whales, gray whales, humpback whales, northern right whale dolphins, pacific white-sided 
dolphins, and Risso’s dolphins. A total of 46 sightings of these species were recorded, 
which amounts to observation of 194 individuals once group size at each sighting is 
accounted for. After filtering out the off-effort or unsuitable sightings, pacific white-sided 
dolphins were observed in greatest numbers (75 individuals, 4 groups), followed by 
humpback whales (27 individuals, 13 groups), northern right whale dolphins (25 
individuals, 1 group), and gray whales (11 individuals, 7 group). Eleven sightings 
(including 19 individuals) were qualified as “unidentified baleen whales.” 

Table 1. Dates of cetacean surveys conducted aboard USCG helicopters off the Oregon coast, 
by month, and transect, since January 2023. Grey boxes indicate that the transect was not 
surveyed during that month, due to weather, helicopter maintenance, limited scheduling 
opportunities, search and rescue operation, and/or personnel availability (see details at the end 
of this report).  

NB, South NB, North Newport Warrenton 

2023 

January 21-Jan 22-Jan 17-Jan 19-Jan
February 12-Feb 17-Feb 28-Feb

March 5-Mar 26-Mar 25-Mar 21-Mar
April 7-Apr
May 28-May 16-May
June 18-Jun 18-Jun 27-Jun

These newly acquired ship-based and helicopter-based distance sampling data were 
processed as per Derville et al., (2022) to derive counts of whale groups and individuals 
per 5-km long segments. Several minor revisions were applied to streamline and improve 
the R code workflow that processes these data before inclusion in a density surface 
model. For instance, these revisions include removing sections of survey made in 
conditions considered too poor for whale detection (i.e., when sightability was scored 
“Very Bad” or Beaufort Sea State reached 6). 



Step 3: Fishery effort mapping 

ODFW continued to collect and enter logbooks from Dungeness crab and other fixed gear 
fisheries. Data entry was completed for two additional crab seasons (2021-22 and 2015-
16), and QA/QC was completed for 2015-16. This data will be available to update fishery 
effort maps in the next reporting period. 

Step 4: Small boat surveys 

One small boat survey funded by this award was conducted off Newport on June 2, 
following observations of humpback whales aggregating on the continental shelf. Groups 
of one to three humpback whales were observed. Some of these groups were observed 
foraging in the area. Of the 11 individuals observed, nine were photo-identified, seven 
were biopsied and one fecal sample was collected.  

Step 5: Compilation of environmental predictor variables 

Compilation of environmental variables continued over this reporting period, building off 
previous work that included environmental conditions up to September 2021 (Derville et 
al., 2022). Daily remotely sensed chlorophyll-a layers were downloaded from September 
2021 onwards. Regional Ocean Modeling System (ROMS) variables could not be 
updated due to technical issues on the server’s end; ROMS technicians at UC Santa Cruz 
are currently addressing this issue. 

Outreach and Engagement 

Step 6: Promote reporting of whale sightings 

The reporting of whale sightings continues to be promoted during public outreach events 
and OSU’s website home page (https://mmi.oregonstate.edu/gemm-lab). Moreover, 
fishermen engaged in another related research project led by OSU/MMI (SLATE: 
https://mmi.oregonstate.edu/gemm-lab/slate) are directly reporting whale sightings 
through custom made data sheets. ODFW promoted reporting of whale sightings with 
WhaleAlert in the annual crab newsletter, mailed to all permit holders in January 2023 
and posted to ODFW’s website. 

Step 7: Develop and manage fleet alert system 

Since the month of April, OSU communicated monthly summaries to ODFW to report on 
the monthly distribution of whales and upwelling conditions as measured by the 
Cumulative Upwelling Transport Index (CUTI) and Pacific Decadal Oscillation (PDO) that 
were found to be potential indicator of entanglement risk (Derville et al., 2023). Following 
the observation of an aggregation of humpback whales within 40 fathoms off Astoria and 
ODFW’s assessment that May fishery effort would be well above normal, a fleet advisory 

https://mmi.oregonstate.edu/gemm-lab
https://mmi.oregonstate.edu/gemm-lab/slate


was issued for May 2-31. The advisory was distributed via the ODFW website, email to 
advisors, and the ODFW GovDelivery commercial crab listserv which has over 14,000 
subscribers. ODFW also began exploration of distribution channels to reach other fixed 
fishery participants. Finally, seven derelict crab gear sets detected by OSU/MMI during 
boat-based surveys in May and June and were reported to ODFW and locations were 
posted on the ODFW website to inform vessels interested in recovering derelict gear. 

Step 8: Develop R shiny app to predict whale distribution on a weekly scale 

This task was not prioritized during this reporting period and OSU has no progress to 
report. OSU anticipates this work to primarily occur toward the end of the project, once 
whale predictive models are being finalized. 

Step 9: Raise awareness of issue and project 

The context, process, and value of this project have been communicated by OSU through 
diverse outreach efforts during this reporting period. On February 27, a research 
presentation shared preliminary results of concurrent whale-krill analyses to the OSU 
College of Earth, Ocean, and Atmospheric Sciences graduate students, staff, and faculty 
(approximately 25 people). Other efforts have been aimed at local Oregon classrooms. 
On March 22, two virtual presentations at Valley Catholic Middle School’s Women in 
STEM Day shared about methods of studying krill and whales, the experience of seagoing 
fieldwork, and a basic overview of species distribution modeling to approximately 60 
students. On March 3, a kindergarten class at Bessie Coleman Elementary School 
learned about Oregon whales and krill, looked at photographs from the field, and passed 
around dried krill samples (approximately 20 students). 

In addition, two paid undergraduate interns who joined the project during the summer of 
2022 have continued working on krill identification, microscopy, and krill caloric sample 
processing during this reporting period. One wrote a blog post about her experience1, and 
the other wrote about the process of caloric analysis2. Another blog post shared about 
Project OPAL through the lens of adaptive, ecosystem-based management3. 

Outreach regarding entanglement issues and related whale research off the coast of 
Oregon was also conducted as part of the Marine Science Day (April 8) at the Hatfield 
Marine Science Center and during STEM at Sea cruises (May 9, 11, 12) run by Oregon 
Sea Grant onboard the R/V Pacific Storm. Students from Molalla High School, Tillamook 

 
1 https://blogs.oregonstate.edu/gemmlab/2023/05/01/navigating-the-research-
rollercoaster/ 
2 https://blogs.oregonstate.edu/gemmlab/2023/01/09/a-glimpse-into-the-world-of-marine-
biological-research/ 
3https://blogs.oregonstate.edu/gemmlab/2023/01/30/a-matter-of-time-adaptively-
managing-the-timescales-of-ocean-change-and-human-response/ 

https://blogs.oregonstate.edu/gemmlab/2023/05/01/navigating-the-research-rollercoaster/
https://blogs.oregonstate.edu/gemmlab/2023/05/01/navigating-the-research-rollercoaster/
https://blogs.oregonstate.edu/gemmlab/2023/01/09/a-glimpse-into-the-world-of-marine-biological-research/
https://blogs.oregonstate.edu/gemmlab/2023/01/09/a-glimpse-into-the-world-of-marine-biological-research/
https://blogs.oregonstate.edu/gemmlab/2023/01/30/a-matter-of-time-adaptively-managing-the-timescales-of-ocean-change-and-human-response/
https://blogs.oregonstate.edu/gemmlab/2023/01/30/a-matter-of-time-adaptively-managing-the-timescales-of-ocean-change-and-human-response/


High School, and Blanchette Catholic School shared a day at-sea with OSU scientists 
(funded by NOAA award NA22NMF4690373) to learn about whale survey techniques, 
ecology and conservation (Figure 1). 

 

Figure 1: Students and OSU scientists onboard the R/V Pacific Storm during the May STEM cruises 
(observers’ time funded by NOAA award NA22NMF4690373). 

 

Spatial and ecological analysis of prey and whales 

Step 11: Analysis of krill data 

Acoustic data processing – During the NCC cruises onboard the R/V Bell M. Shimada, 
acoustic backscatter data were collected via hull-mounted Simrad EK60 (2018) and EK80 
(2019-2022) echosounders operating at multiple frequencies (18, 38, 70, 120, and 200 
kHz). Acoustic data were processed by OSU using Echoview version 13.1 (Echoview Pty 
Ltd, Hobart, Australia) following the workflow described in Phillips et al., (2022). Various 
filtering steps were applied to remove background noise and omit seafloor echoes and 
bottom intrusion. Data within 30 m of the water surface were omitted as well as below a 
depth of 300 m. Data are reported in relative units of abundance using Nautical Area 
Scattering Coefficient (NASC, m2nmi-2), which is a proxy for biomass. Frequency differing 
was used to identify the acoustic signal of krill and calculate krill NASC layers at a 10 m 
resolution. Methods are detailed in (Kaplan et al., In review; see Appendix). 

Krill distribution model – Using the NASC data derived from echosounder data collected 
across NCC cruises 2018-2022, OSU conducted preliminary analyses of krill distribution 
relative to seabed topography. Daytime daily NASC values summed over the whole water 
column (30 m to 300 m deep) were aggregated over grids of 5 km resolution (matching 
rorqual whale models) and environmental variables were extracted for each grid cell. 
NASC was modelled with a Tweedie distribution in a Generalized Additive Model 



including three topographic variables: seabed depth, seabed slope and distance to 
canyons. This model had a deviance explained of 21 % and suggested significant 
multimodal relationships between krill and seabed topography (Figure 2). 

 

Figure 2: Krill NASC relationships to topographic variables fitted with a Generalized Additive Model 
generated using 4 years of NCC cruise echosounder data (2018-2022). Solid lines represent the marginal 
effect of each variable relative to krill NASC. Shaded areas represent the 95 % confidence intervals. 
Predictors include: DIS_CANYON = distance to canyons (in km), DEPTH = seabed depth (in meters), 
SLOPE = seabed slope (radians). 

Caloric analysis - Bomb calorimetry is the gold standard for the caloric analysis of prey 
species, including krill. In September 2022, individual krill were collected for caloric 
analysis aboard the R/V Bell M. Shimada (n=160). These krill were processed for their 
caloric content during winter and spring 2023 using bomb calorimetry. Preliminary 
analyses suggest that in the fall (September), the caloric content of Thysanoessa 
spinifera krill is higher than that of Euphausia pacifica, but that in the spring (May), the 
caloric content of these two species is not significantly different (Figure 3). 

 



 

 

Figure 3: Preliminary 
analyses indicate that 
Thysanoessa spinifera krill 
has higher caloric content 
than Euphausia pacifica in 
September (One-way 
ANOVA, p < 0.05), and 
that the species do not 
have significantly different 
caloric content in May 
(One-way ANOVA, p > 
0.05). 

 

Step 12: Assess fish distribution with whale densities 

Relationships between fish and whales – Daily predictions of anchovy, sardine, and 
herring occurrence at 0.1 ° resolution were provided by B. Muhling et al. 
(https://coastwatch.pfeg.noaa.gov/erddap/griddap/FRD_CPS_SDMs.html). Predictions 
of fish occurrence were derived from Generalized Additive Models that were trained with 
fishery independent sampling combined with a variety of environmental variables   
(Muhling et al., 2019). Layers were processed along with other environmental layers used 
for this project: these layers were averaged at a weekly scale, expanded to include very 
nearshore pixels, projected in a UTM coordinate system, and resampled at 5 km 
resolution (e.g., Figure 4).  

Fish occurrence values were extracted at the centroid of each 5-km segment of whale 
survey effort (including all USCG helicopter and ship platforms). Similar to the approach 
taken to model whale densities based on ROMS variables in (Derville et al., 2022), fish 
variables were computed at a weekly scale, with daily values averaged over the 7 days 
prior to any given survey day included in the data. Generalized Additive Models were 
fitted to the number of whales per segment with a negative binomial distribution and a 
logarithmic link function, using the mgcv R package (Wood, 2011). Offsets and weights 
were used to account for detection and availability bias. Fish explanatory variables were 
modeled with penalized thin‐plate regression splines with basis size limited to 5 to prevent 
overfitting (Wood, 2017). Variable selection was conducted with a shrinkage approach 
implemented in the mgcv R package, which adds an extra penalty to each smoother and 
penalizes non-significant variables to zero (Marra & Wood, 2011). Models were generated 
by season (April-July or August-November) and by species (blue whales, fin whales, and 
humpback whales, as well as all these species grouped together with unidentified rorqual 

https://coastwatch.pfeg.noaa.gov/erddap/griddap/FRD_CPS_SDMs.html


whales). 

 

 

Figure 4: Predicted occurrence of anchovy, herring and sardine in the third week of May (top) and of August 
(bottom) 2022. Data source: (Muhling et al., 2019). 

Fish predicted layers were available until October 2022, hence not yet covering the 
entirety of the whale survey dataset (which extends through June 2023). Resulting 



preliminary models of whale distribution suggest generally significant relationships 
between rorqual whales and anchovy and herring, and to a lesser extent with sardines 
(Figure 5). Models of humpback, fin, and rorqual whale densities related to fish variables 
during the two periods of interest (Apr-Jul and Aug-Nov) had relatively high performance, 
as evaluated with the percent deviance explained that ranged from 16% (Humpback 
whale Aug-Nov model) to 42 % (Fin whale Aug-Nov model). Anchovy and herring were 
significant predictors of fin whale and humpback whale densities in both seasons. More 
surprisingly, sardine, and anchovy were found to be significant predictors of blue whale 
densities in Aug-Nov (deviance explained 26 %) although blue whales do not feed on fish. 
This result suggests potential cross-correlation among biotic (fish and krill) and abiotic 
(seabed topography and ocean conditions) variables, which will be further investigated. 

 

Figure 5: Rorqual ecological relationships modelled over two seasons: April-July and August-November. 
Functional response curves represent the effect of the smooth function of a selected set of predictor 
variables (anchovy, herring, and sardine occurrence) upon the trend in rorqual density, with higher values 



indicating higher predicted densities. Solid lines represent the marginal effect of each variable relative to 
rorqual density per season and per species (BLWH = blue whales, FIWH = fin whales, HBWH = humpback 
whales, ROR = all rorqual whales). Note that the blue whale model was only generated for the months of 
Aug-Nov because sample size was not large enough in the other season. 

Step 13: Generate rorqual whale SDMs 

Workflow for density surface modeling – Over this reporting period OSU worked on 
consolidating R codes to compile ship-based and helicopter-based distance sampling 
data that allows for efficient and effective density surface modeling of whales. The code 
pipeline runs in 5 steps: 1) processing of helicopter-based survey effort and observations, 
2) processing of ship-based survey effort and observations, 4) merging datasets (Figure 
6), assessing unidentified rorquals, counting the numbers of observations by 5 km 
segments, extracting environmental data at the centroid of segments, 4) estimating the 
effective strip width in a hierarchical Bayesian framework, and 5) generating density 
surface models of whales, by season and by species. This pipeline will allow a more 
effective integration of data as they continue to be collected during this project. 

 

Figure 6: Distance surveyed per month per year from multiple ship-based and helicopter-based platforms 
(June 2023 effort is not represented in this figure). 

Relationships between krill and whales – Clarifying the most meaningful spatial scale to 
analyze relationships between humpback whales and krill, a key prey item, is important 
to understanding ecosystem function and informing research and management 
efforts. To examine spatially-explicit relationships between humpback whales and krill, 
OSU matched concurrent whale sighting (see step 1) and acoustic krill data (see step 11) 
collected onboard the R/V Bell M. Shimada (2018-2022) by day and location (Figure 7). 
These data were used in Generalized Additive Mixed Models predicting humpback whale 
occurrence at a series of nested spatial scales: 1 km, 2 km, 5 km, and 20 km. Krill relative 
abundance at a spatial scale of 5 km had the greatest correlation with humpback whale 
occurrence (Figure 8). Whale predator and krill prey relationships at this 5 km scale may 
be both energetically profitable to whales attempting to optimize foraging efficiency, and 
evident via traditional methodological approaches (paired observer and echosounder 



surveys). This work led to the recommendation that prey data at the 5 km scale be 
incorporated into the next steps of this project and considered for management 
applications in this region. This work is currently in review in the journal Marine Ecology 
Progress Series and the full manuscript is attached to this report (Kaplan et al. In review; 
appendix 1). 

 

Figure 7: Average depth distribution of krill relative abundance (NASC) at each buffer radius scale 
surrounding the sighted humpback whales. Standard deviations are shown as horizontal bars across each 
point. Source: Kaplan et al. In review



 

Figure 8: Humpback whale-krill relationships modeled across multiple depth bins and spatial scales. 
Response curves represent the effect of the smooth function upon the trend in humpback whale presence, 
with higher values indicating higher predicted probability of occurrence. Shaded ribbons represent the 95% 
confidence intervals colored per fitted trend. All variables have significant p-values <0.0001. Source: Kaplan 
et al. In review 

 

Humpback whale genetic and photo-ID analysis 

Step 17-18: genetic DPS assignment and site fidelity analysis by individual and 
DPS 

As part of NOAA award NA22NMF4690373, OSU worked with John Calambokidis from 
Cascadia Research Collective to retrieve sighting data of humpback whales in Oregon 
waters. A table of resights of photo-identified individuals was generated to investigate 
resighting rates of individuals through time (1990-2022) and space (north, central, south 
regions of Oregon waters as defined in Derville et al., 2023). Overall, the dataset includes 
4,609 sightings in the Pacific Ocean (including breeding, foraging and migratory areas) 
of 601 unique individuals observed at least once in Oregon waters.  

Sightings recorded within Oregon waters were selected to be analyzed under this award. 
The majority of sightings in Oregon were made between 2017 and 2020 in central Oregon. 
A lack of photo-identification data was identified in the north (Figure 9). However, more 
photo-identification data collected as part of this award and through other collaborations 
are expected to be incorporated in this analysis (see Step 1: 2022-2023 MOSAIC cruises 
and May 2023 NCC cruise).  



Distinct Population Segment assignment information for each individual derived from 
either genetics or sighting information from breeding grounds (if available) will be 
incorporated into this dataset to assess site fidelity in Oregon relative to DPS. 

 

Figure 9: Number of uniquely photo-identified humpback whales observed every year in Oregon waters as 
part of the Cascadia Research Collective surveys and the GEMM Lab (OSU) surveys. Zones correspond 
to crab harvest areas: south, from Bandon to the southern Oregon border; central, between Bandon and 
Cascade Head; and north, from Cascade Head to the northern Oregon border. Data source: Cascadia 
Research Collective. 

Explanation of any problems or delays in accomplishing planned activities: 

Helicopter surveys may be missed for a combination of reasons that are out of OSU’s 
control and are often unpredictable. Scheduling opportunities with USCG for flights are 
limited (typically 4-5 days per month), do not always align with good weather for survey 
effort, and cannot be planned more than 1 week in advance in the case of the North 
Bend sector. Bad weather conditions (fog, rain, strong winds) cannot always be 
anticipated, as well as search and rescue operation (SAR) that may cancel a flight 
unexpectedly. Helicopter maintenance and availability of trained personnel may also 
limit survey schedules. 



 

The California Current Regional Ocean Modeling System (ROMS) variables could not 
be updated due to a crash of the ROMS THREDDS server in the winter 2023, which 
has not been resolved as of today. OSU is in touch with the University of California 
Santa Cruz Ocean Sciences Department to resolve this issue or find an alternate 
solution to acquire this data as soon as possible. This technical issue affected steps 5 
(compilation of environmental variables), 8 (R shiny app), 11 (krill analysis), and 13 
(whale models). In the meantime, OSU worked on step 12 (whale ~ fish models) 
although it was not initially planned to be conducted during this reporting period. 
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Abstract (200 word maximum) 1 

Understanding scale-dependent variability in predator-prey relationships is essential to 2 

ecosystem management. The Northern California Current (NCC) ecosystem provides important 3 

foraging grounds for humpback and other rorqual whales, where these animals also face diverse 4 

anthropogenic threats. Clarifying the most meaningful spatial scale to analyze relationships 5 

between humpback whales and krill, a key prey item, is important to understanding ecosystem 6 

function and informing research and management efforts. To examine spatially-explicit 7 

relationships between humpback whales and krill, we matched concurrent whale sighting and 8 

acoustic krill data collected in the NCC (2018-2022) by day and location. These data were used 9 

in Generalized Additive Mixed Models predicting humpback whale occurrence at a series of 10 
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nested spatial scales: 1 km, 2 km, 5 km, and 20 km. We found that krill relative abundance at a 11 

spatial scale of 5 km had the greatest correlation with humpback whale occurrence. Whale 12 

predator and krill prey relationships at this 5 km scale may be both energetically profitable to 13 

whales attempting to optimize foraging efficiency, and evident via our traditional methodological 14 

approaches (paired observer and echosounder surveys). We recommend that prey data at the 5 15 

km scale be incorporated into future models and considered for management applications in this 16 

region. 17 

Introduction 18 

Trophic relationships drive the function of communities, flow of energy through 19 

ecosystems, and biogeochemical cycles integral to the earth system (Lindeman, 1942). Predator-20 

prey relationships both result from and control the distribution of species, causing feedback loops 21 

on species’ behavior, genetics, and evolution (Barbosa & Castellanos, 2005). Across diverse 22 

environments, ecological studies have revealed how distributions of prey structure those of 23 

predators, from the inverse and cyclical population dynamics of lynx and snowshoe hare across 24 

Canada (Elton & Nicholson, 1942), to multiscale distributions of murres and capelin in the 25 

Barents Sea (Fauchald et al., 2000), to penguins foraging for fish in shallow eastern Australia 26 

waters (Carroll et al., 2017). 27 

Prey patches in many ecosystems exist within a hierarchical framework that contains 28 

nested spatiotemporal scales (Kotliar & Wiens, 1990). However, ecological relationships 29 

between predators and prey differ depending on the scale of observation; thus, identifying the 30 

most relevant scales at which to observe, understand, and manage these relationships is complex. 31 

Ecosystems are characterized by variability across a range of spatial and temporal scales, and the 32 

act of observation intrinsically biases the relationships perceived (Levin, 1992). The issue of 33 
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scale is particularly pertinent in marine environments, which are highly dynamic and 34 

characterized by resource patchiness. This inherent complexity is evident in the divergent results 35 

of studies that seek to link predator and prey distributions in the marine environment. For 36 

example, incorporating prey data into fine-scale species distribution models did not improve 37 

predictions of bottlenose dolphin (Tursiops truncatus) occurrence in Florida Bay, in the 38 

southeastern United States (Torres et al., 2008). In contrast, metrics of a krill prey species 39 

(Nyctiphanes australis) helped predict the fine-scale distribution of blue whales (Balaenoptera 40 

musculus brevicauda) in New Zealand’s South Taranaki Bight (Barlow et al., 2020). The spatial 41 

scale at which prey is sampled relative to predators is important for drawing ecological 42 

conclusions, and using proxy environmental data sampled with higher resolution yields better 43 

predictions when prey data are unavailable at appropriate scales (Torres et al., 2008). Other 44 

studies have used satellite tracking and multiple descriptors of prey quantity and quality to 45 

document positive relationships between fine-scale prey patches and individual whales, seals, 46 

and seabirds (e.g. Benoit-Bird et al., 2013; Ryan et al., 2022).  47 

Understanding scale-dependent variability in ecological relationships is essential to 48 

developing a sound understanding of ecosystems, and to managing them (Levin, 1992). Such 49 

efforts may be particularly crucial to animals based on their life history traits. Humpback whales 50 

(Megaptera novaeangliae) are cosmopolitan feeders and capital breeders, relying on stored 51 

energy reserves to complete their migrations between foraging and breeding grounds and 52 

reproduce (Dawbin, 1966). Exploiting prey resources efficiently during the limited time spent on 53 

the foraging grounds is key for humpback migration timing, survivorship, and reproductive 54 

success. Every spring, several populations of humpback whales (Central American, Mexican, 55 

and Hawaiian Distinct Population Segments; NOAA Fisheries, 2016) migrate from low-latitude 56 
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calving grounds to important foraging grounds in the Northern California Current (NCC) region 57 

off the U.S. west coast. One of the globe’s four eastern boundary current systems, the California 58 

Current extends from the transition zone separating the North Pacific and Alaska gyres in the 59 

north to Baja California, Mexico, in the south (Checkley & Barth, 2009). Wind-driven upwelling 60 

drives seasonal nutrient input and high biological productivity both along the continental shelf 61 

and offshore, supporting euphausiids and other zooplankton, as well as predatory fish, seabirds, 62 

cetaceans, and pinnipeds (Checkley & Barth, 2009). Two species of krill, Euphausia pacifica 63 

and Thysanoessa spinifera, are abundant in this region and are targeted by foraging rorqual 64 

whales, including humpbacks (Brinton, 1962).  65 

Krill are patchily distributed and undergo diel vertical migration, taking refuge from 66 

predators at depth during the day and moving to the surface to feed at night (Brinton, 1967). 67 

Humpback whales are generalist feeders capable of prey-switching in response to prey 68 

availability driven by oceanographic and environmental conditions, such as targeting krill during 69 

positive phases of the North Pacific Decadal Oscillation, and schooling fish during negative 70 

phases (Fleming et al., 2016). Anomalously low krill abundance in the central California Current 71 

region during the 2014-2015 marine heatwave event caused humpback whales to target inshore 72 

anchovy schools rather than offshore krill patches, and this resulting habitat compression led to 73 

an increase in fisheries entanglement events (Santora et al., 2020). Humpback whales also 74 

change the depth at which they forage based on vertical prey availability. In particular, they may 75 

target shallower prey when available to reduce the additional energetic costs of feeding at depth, 76 

which requires longer dives and extended breath holding (Goldbogen et al., 2012). 77 

Recent work has examined humpback-prey relationships at multiple scales in the broader 78 

California Current Large Marine Ecosystem (CCLME), with the aim to enhance understanding 79 
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of ecosystem function and inform ecosystem-based management (e.g. Fleming et al., 2016; 80 

Rockwood et al., 2020; Santora et al., 2020). A multiscale study utilized telescoping spatial 81 

scales (25 km, 50 km, and 100 km) and incorporated multiple prey types (herring, anchovy, krill) 82 

to describe relationships between humpback whales and prey across the CCLME (Szesciorka et 83 

al., 2023). While whale abundances were not strongly correlated with prey biomass, models 84 

based on the number of proximate prey hotspots had stronger predictive capacity (Szesciorka et 85 

al., 2023). Clarifying the most meaningful spatial scale at which to analyze humpback-prey 86 

relationships in this region is important to understanding ecosystem function, anticipating 87 

humpback whale response to climate change, and informing research and management. 88 

Whales throughout the CCLME are threatened by diverse anthropogenic impacts, 89 

including entanglement, ship strikes, noise, water quality, and marine debris (Oldach et al., 90 

2022). Hence, there is a direct need to understand the impactful scales of relationships between 91 

whales and prey in the NCC (Derville et al., 2023). Krill is abundant relative to other prey types 92 

in the NCC region (Szesciorka et al., 2023), and E. pacifica and T. spinifera (hereafter “krill”) 93 

are considered the main component of the preyscape for humpback whales. In this study, we 94 

explore humpback-krill relationships and clarify the meaningful spatial scales at which these 95 

relationships operate in the NCC region. We use a concurrent dataset of humpback whale visual 96 

observations and an acoustically-derived krill abundance proxy collected over four years (2018-97 

2022) to model relationships across multiple spatial scales, with the objective to identify the 98 

most relevant scale of prey drivers of humpback whale distributions. We hypothesized that 99 

associations between whales and krill are strongest at finest spatial scales and decline at 100 

increasing scales (1 km > 2 km > 5 km > 20 km). As no common definition of scale resolution 101 

from fine to coarse exists across the fields of oceanography and spatial ecology (e.g. Stommel, 102 
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1963; Mannocci et al., 2017; Torres, 2017), we refer to 1 km and 2 km as very fine-scale, 5 km 103 

as fine-scale, and 20 km as mesoscale. 104 

Methods 105 

Whale data collection and processing 106 

From 2018 to 2022, marine mammal observers collected cetacean distribution data during 107 

cruises aboard the NOAA Ship Bell M. Shimada. These cruises occur in February, May, and 108 

September annually, and they transit between La Push, WA to Crescent City, Trinidad, or San 109 

Francisco, CA, USA, sampling oceanographic stations up to 200 nautical miles offshore. 110 

Observers collected data during transits between oceanographic stations, following a distance 111 

sampling protocol (Buckland et al., 2015). A handheld GPS was used to record the trackline of 112 

the ship, which was subsequently interpolated to 1 position every 30 seconds to ensure 113 

consistency across surveys. Survey speed averaged 10 kts, with occasional periods of 5 kt travel 114 

due to other research needs. Observers (typically two) were positioned on either side of the 115 

vessel’s flying bridge, 13 m above the waterline, and during poor survey conditions would 116 

transition to the bridge, 10.5 m above the waterline. During on-effort survey periods, observers 117 

constantly scanned from the ship to the horizon for animals, using binoculars at least 30% of the 118 

time. Individuals were identified to species if a positive visual ID was possible and recorded as 119 

unidentified whales if not, and group sizes were estimated conservatively based on the number of 120 

simultaneous observations of nearby whales. In addition, the angle of the animal to the trackline 121 

at the point of first observation was estimated and recorded. Radial distance was estimated 122 

visually for nearby animals within 1000 m, and using binocular reticles for those farther away 123 

(Fujinon 7x50’s). These data were used to trigonometrically derive geographic coordinates of the 124 

sighted whales using the geosphere R package (version 1.5-14). Whale groups that included 125 
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either humpback whales or unidentified rorqual whales were considered for further analysis 126 

(Table 1, Figure 1). 127 

Acoustic data collection and processing 128 

Acoustic backscatter data were collected via hull-mounted downward-looking Simrad 129 

EK60 (2018) and EK80 (2019-2022) narrow-band split-beam echosounders operating at multiple 130 

frequencies (18, 38, 70, 120, and 200 kHz). Data were recorded continually from the surface to a 131 

depth of 750-1000 m using a 1.024-ms narrow-band pulse at rates ranging between 1 ping/sec to 132 

1 ping/8 sec, depending on bottom depth. 133 

Acoustic data were processed using Echoview version 13.1 (Echoview Pty Ltd, Hobart, 134 

Australia) following the workflow described in Phillips et al. (Phillips et al., 2022). Background 135 

noise was estimated based on the mean volume backscattering strength (MVBS or Sv, dB re 1 m-136 

1) in 40 ping x 10 m cells, and removed by subtracting estimated background noise from the 137 

original signal using a maximum noise threshold of -125 dB and a 10 dB signal-to-noise ratio 138 

threshold (De Robertis & Higginbottom, 2007). Impulse noise spikes were removed using a 139 

dedicated Echoview operator. The bottom was detected acoustically and corrected manually as 140 

needed to omit seafloor echoes and bottom intrusion, which was minimized by a 2 m offset. In 141 

addition, data within 30 m of the water surface were omitted to remove surface noise and 142 

bubbles, and to account for the near-field range of the 38 kHz echosounder. Though this 143 

exclusion may omit small amounts of krill near the surface and seafloor, we consider the losses 144 

to likely be negligible. Data from below a depth of 300 m were excluded to account for 145 

decreased signal-noise ratio with depth, especially for the 120 kHz frequency. Acoustic data 146 

were also omitted when vessel speeds dropped below 5 kts. Data are reported in relative units of 147 

abundance using Nautical Area Scattering Coefficient (NASC, m2nmi-2), which is a proxy for 148 
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biomass. Because the data were collected using uncalibrated echosounders, we did not attempt to 149 

compare overall abundances of krill between years, but instead focused on relationships between 150 

relative krill abundance and whales within each survey. 151 

Krill identification and quantification 152 

We used frequency differing to identify the acoustic signal of krill, based on published 153 

frequency difference ranges for krill in the North Pacific (De Robertis et al., 2010) and previous 154 

efforts in the region (Phillips et al., 2022). We first aligned our data in Echoview by matching 155 

120 kHz cells to 38 kHz cells in space and time using ping times and sample geometry, and used 156 

a ΔMVBS120-38 range of 10.0-16.3 dB to classify krill from other backscatter. We then used an 157 

integration threshold of MVBS values less than -70 dB at 120 kHz to export georeferenced 120 158 

kHz volumetric Sv and NASC, integrated in 10 x 10 m bins. 159 

These data were scrutinized for possible contamination by noise spikes or inclusion of 160 

targets like small fish with swim bladders by visually examining cells with mean Sv values 161 

between -35 and -45 dB and removing noise manually if needed. Cells with an Sv value of -80 162 

dB or below were then set to 0 to omit weak signals that represented less than 3-4 krill m-3 163 

(Phillips et al. 2022). 164 

Whale-krill analysis 165 

To examine in situ relationships, georeferenced whale and krill data were matched by day 166 

and location. Krill data were restricted to periods of daytime (one hour after sunrise to sunset) 167 

on-effort whale observation to remove the effects of diel vertical migration and align with them 168 

temporally with whale data. All analyses were conducted using the program R (R Core Team, 169 

2021). The data were projected in the Universal Transverse Mercator system (UTM) and 170 

concentric circles (hereafter referred to as “buffers”) with radii of 1 km, 2 km, 5 km, and 20 km 171 
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were drawn around all rorqual whale observations (Figure 2; R sf R package, version 1.0-8). 172 

Given that only humpback whales were included in this analysis, krill data in the vicinity of non-173 

humpback whales were removed to ensure a more realistic sampling. Krill data were assigned as 174 

being within or outside the area of each buffer, and the average log-transformed NASC vertical 175 

profiles were assessed within the four different buffer sizes. Based on these profiles, NASC was 176 

vertically averaged into 30-50 m, 50-100 m, 100-200 m, and 200-300 m depth bins for further 177 

comparisons to humpback whale observations. Across depth bins, a check for autocorrelation 178 

between these log-transformed mean NASC yielded a maximum Pearson’s pairwise correlation 179 

of 0.36, and therefore all were maintained for modeling purposes (corrplot R package, version 180 

0.92). 181 

To compare and quantify the relationships between krill and whales at a range of spatial 182 

scales, these data were used in a series of models run across the four buffers described above. 183 

We used Generalized Additive Mixed Models (GAMMs, mgcv R package, version 1.8-42, 184 

Wood, 2011) to quantify the relationships between humpback whale presence versus absence 185 

and krill NASC. GAMMs use data-defined smoothing elements to model non-linear responses to 186 

a set of predictors (Elith & Leathwick, 2009). We selected GAMMs for their capacity to adeptly 187 

represent realistic ecological relationships and accommodate complex interactions between 188 

species distributions and environmental variability (Torres et al., 2008), which makes them 189 

useful for modeling  marine mammals distributions (e.g. Derville et al., 2018; Orphanides et al., 190 

2023; Szesciorka et al., 2023). Cruise ID was included as a random effect in the models to 191 

account for variability in effort and environmental conditions between surveys, and interaction 192 

effects were quantified by including an interaction between krill NASC and depth bin. Whale 193 

group size was accounted for through weights equal to the number of individuals comprising a 194 
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whale group within a given buffer, so that differences in habitat use by one foraging whale 195 

versus a group of foraging whales could be quantified. GAMMs were fitted with a binomial 196 

response distribution using a logarithmic link function and a Restricted Maximum Likelihood 197 

method (bam and fREML, mgcv R package, version 1.8-42). The effect of krill relative 198 

abundance on humpback whale occurrence was modeled with penalized thin‐plate regression 199 

splines with basis size limited to 5 to prevent overfitting (Wood, 2017). Variable selection was 200 

conducted with a shrinkage approach implemented in the mgcv R package, which adds an extra 201 

penalty to each smoother and penalizes non-significant variables to zero (Marra & Wood, 2011). 202 

Model fit was evaluated based on the percent deviance explained, as calculated and reported by 203 

mgcv for a binomial error distribution (Wood, 2011). 204 

Across all whale survey transects, acoustic data were analyzed within 1 km of a total of 205 

29 humpback whale groups containing 37 individuals. We ran a series of humpback whale-krill 206 

association models using this subset of humpback whale groups to investigate the strength of 207 

these predator-prey relationships across spatial scales (Table 1). We also conducted this analysis 208 

using all rorqual whale observations, which included fin whales, humpback whales, and 209 

unidentified rorqual whales (n = 235 individuals in 178 groups). For our final model, we ran 210 

another version of the 5 km spatial scale model using the full subset of humpback whales 211 

observed within 5 km of the trackline (n = 79 groups). 212 

Results 213 

A total of 670 rorqual whales (1-10 individuals per group) were sighted during 19,288 214 

km of survey effort during eight cruises between 2018 and 2022 (Table 1). Krill were detected 215 

throughout our study area during each summer and fall survey, and krill relative abundance in 216 

the vicinity of whales increased with the spatial scale of observation (i.e., with buffer size; one-217 
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way ANOVA: df = 3, F = 3.8, p = 0.011; Figure 3). Relative to concurrently observed whales, 218 

less krill (log NASC m2nmi-2) were detected at a 1 km very fine scale (mean 13.83 ± SD 0.66), 219 

compared to the 20 km mesoscale (mean 28.80 ± SD 0.86; post-hoc Tukey test: p-adjusted = 220 

0.018), and there was not a significant difference between krill relative abundance detected at the 221 

20 km mesoscale and the 5 km fine scale (post-hoc Tukey test: p-adjusted = 0.541). 222 

The subset of humpback whale observations (n = 29 groups of 37 individuals) associated 223 

with krill data collected within 1 km of the sightings was used in model 1 (1 km scale), model 2 224 

(2 km scale), model 3 (5 km scale) and model 4 (20 km scale). Model deviance explained 225 

increased with buffer size, from 14.1 % at 1 km, to 18.7% at 2 km, to 25.2% at 5 km, to a 226 

maximum of 36.0% at the 20 km scale (Table 2). However, marginal deviance explained, which 227 

describes the contribution of krill NASC to the explanatory power of the model, increased with 228 

scale to a maximum at the 5 km scale (3.8%; model 3), and then declined at the 20 km mesoscale 229 

(2.5%; model 4). Overall, krill positively influenced whale occurrence at all spatial scales and 230 

depth bins, and relationships were generally stronger at smaller scales and shallower depth bins 231 

(Figure 4). In the shallowest layer (30-50 m), the relationship was strongest at very fine scales (1 232 

km and 2 km) as identified from the magnitude of the smooth effect variations in the partial 233 

response plots (Figure 4). In the 100-200 m bin, the response curves at all scales exhibited the 234 

same slight bimodal shape. In the 50-100 m and 200-300 m depth bins, the influence of krill on 235 

whale presence was strongest at 2 km and 5 km. Across all depth layers and all spatial scales, the 236 

effect of krill on whales became positive at a mean log-transformed NASC value of 4 (54.60 237 

unlogged). At the 20 km scale, this relationship consistently became negative in each depth bin 238 

at relatively large values of mean log-transformed NASC (~ 6.5).  239 
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Given that relationships between whales and krill appeared strongest at the 5 km scale, an 240 

additional model was run at this scale using all humpback whale observations that had associated 241 

krill data within 5 km (model 5, n = 79 whale groups containing 105 individuals). We found that 242 

model 5 had 26.7% conditional deviance explained and 3.4% marginal deviance explained, 243 

hence showing relatively similar performance to model 3. In the 100-200 m and 200-300 m 244 

depth bins, partial response to krill NASC was similar to model 3, while the response was 245 

stronger in the 30-50 m and 50-100 m depth bins than in model 3 (Figure 5). In models run 246 

across a larger set of all rorqual whales (see Supplementary Material), deviance explained 247 

increased from 15.6% at 1 km to 33.9% at 20 km, with a marginal deviance explained of 2.6 % 248 

at 5 km. 249 

Discussion 250 

Our study illuminates the scale-dependent relationships that exist between humpback 251 

whales and krill, one of their key prey items. We found that krill relative abundance at a spatial 252 

scale of 5 km has the greatest correlation with humpback whale occurrence in the NCC region. 253 

This result speaks to both meaningful scales of observation and ecological relationships between 254 

humpback whales and their euphausiid prey, and this scale has proven effective in other 255 

modeling efforts in this region (Derville et al., 2022). Observations made at the 5 km scale 256 

appear the most useful for understanding and anticipating humpback-krill relationships in the 257 

NCC ecosystem, and we suggest this scale of observation will be the most helpful to inform 258 

efforts to conserve the marine predators and protect this critical prey resource. 259 

Contrary to our hypothesis, the models at very fine scales (1 km and 2 km) did not 260 

perform as well as those at fine and meso scales (5 km and 20 km). This result may indicate that 261 

acoustic prey data at very fine scales do not fully contextualize the foraging environment of a 262 
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humpback whale. While the 20 km scale model (model 4) had higher explanatory capacity than 263 

the 5 km scale model (model 3), krill was less descriptive of whale presence, indicating that this 264 

scale may describe a prey environment that is less relevant or immediately perceptible to 265 

foraging whales. Mean krill NASC per unit area was not significantly greater at the 20 km scale 266 

than the 5 km scale, and the patchiness of the marine environment and tendency of krill to form 267 

discrete swarms (Brinton, 1962) makes it likely that areas of high NASC within a 20 km area are 268 

separated by more waters devoid of krill. Prey patches up to 20 km away may not be perceivable 269 

to a whale, or they may simply not be worth the energy expenditure of increased travel and 270 

searching – particularly if the near environment remains favorable. This may drive the negative 271 

relationship between high krill relative abundance and whale presence at the 20 km spatial scale, 272 

and in the 50-100 and 100-200 depth bins at the 5 km scale (Figure 4). From an observational 273 

standpoint, the 5 km scale is coarse enough to average out fine-scale variation in prey density 274 

and describe the prey environment the whale can “observe” (Levin, 1992), while also being 275 

narrow enough that it is perceptible to a whale sensing the environment to locate patchy food 276 

resources, perhaps acoustically (Torres, 2017). We hypothesize that a 5 km area containing 277 

numerous and profitable prey patches offers whales an opportunity to minimize interpatch travel 278 

time and spend more time foraging to maximize energetic gain. 279 

Ecologically speaking, these scale-explicit relationships between humpbacks and krill 280 

contextualize the landscape of choice that a humpback whale must navigate on the feeding 281 

grounds. Prey density must reach a certain threshold to elicit whale foraging effort and 282 

aggregation, activities which become unprofitable below this threshold (Piatt & Methven, 1992). 283 

Optimal foraging theory predicts that an animal will choose to either maximize gained energy or 284 

minimize the time spent pursuing a given amount of energy (MacArthur & Pianka, 1966). This 285 
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“time saving” approach is assumed to be adopted in favor of risk mitigation or the pursuit of 286 

other behaviors like reproduction (MacArthur & Pianka, 1966). As humpback whales in our 287 

study area are on their foraging grounds, we assume individuals are attempting to maximize their 288 

gained energy by targeting the most advantageous krill patches. In our models, the steep 289 

functional response at intermediate krill relative abundances observed across spatial scales (i.e., 290 

log 4 NASC) may represent a threshold of profitability for foraging humpbacks. At some point 291 

during foraging, any individual prey patch will drop below the threshold of profitability, whether 292 

from exploitation or predator-avoidance behaviors by the prey, and the predator will move on to 293 

find a new patch (Charnov, 1976). Marginal value theorem predicts that a predator acting to 294 

maximize its energetic gain will depart a prey patch when the marginal capture rate in the patch 295 

drops to the average for the broader environment (Charnov, 1976). Areas that are profitable at 296 

the 5 km scale may offer the right balance between effort and reward, sustaining a whale above 297 

the threshold of foraging profitability.  298 

In addition, the depth of krill patches may drive foraging habitat selection. At very fine 299 

spatial scales, the 30-50 m depth bin stands out as a strong predictor of whale presence (Figure 4, 300 

Figure 5). Foraging on near-surface krill may allow a whale to maximize its energetic gain by 301 

minimizing the need to dive and use “acrobatic” feeding strategies (Goldbogen et al., 2013). 302 

Throughout the period of study, the depth of maximum krill relative abundance was centered 303 

around 170 m (Figure 3), which aligns with the findings from previous studies in the region 304 

(Brinton, 1962; Phillips et al., 2022). Interestingly, whale presence as predicted by the 100-200 305 

m depth bin exhibits a slight bimodal distribution across all models, likely reflecting the patchy 306 

distribution of krill. Humpback whale foraging dives have been recorded deeper than 400 m 307 

(Derville et al., 2020), and they may dive more shallowly during the night and based on season 308 
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(Nichols et al., 2022). While krill undergo a diel vertical migration that takes them from depth 309 

during the day to the surface at night, our observational approach based on visual surveys 310 

prevented us from assessing nightime whale distribution when krill is most shallow and 311 

accessible. Therefore, the depth-based relationships we identified may vary diurnally. 312 

Overall, these findings echo previous research illustrating the scale dependency of 313 

predator-prey spatiotemporal co-occurrence. Model outcomes depend upon the scales at which 314 

data are collected and analyzed (Wiens, 1989), highlighting the role of methodology in 315 

ecological interpretation. A positive predictive relationship between blue whales and 316 

acoustically-detected krill was found in New Zealand at a 4 km scale (Barlow et al., 2020), 317 

similar to our study. Findings from both studies contrast with Torres et al. (2008), who found 318 

that environmental predictors far outperformed prey metrics derived from net tows when 319 

modeling bottlenose dolphin distributions in Florida. Though these studies focused on different 320 

ecosystems and species, part of this discrepancy is likely driven by the difference in methods for 321 

quantifying prey: discrete net tows versus continuous hydroacoustic surveys that are more 322 

spatially comprehensive and enable essentially in situ observation of the prey field in the vicinity 323 

of predators. Moreover, while several tracking studies at the scale of discrete prey patches have 324 

shown strong relationships with pinnipeds, seabirds, and rorqual whales (e.g. Benoit-Bird et al., 325 

2013; Kirchner et al., 2018; Cade et al., 2022), it is difficult to describe such fine-scale 326 

relationships based on visual survey data, which constitute a snapshot of predator distributions. 327 

The marginal deviance explained values characterizing our models are in line with other studies 328 

that use a visual detection approach (e.g. Lambert et al., 2019; Receveur et al., 2022; Szesciorka 329 

et al., 2023). Despite the lack of behavioural resolution in our data compared to that obtained by 330 
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satellite tracking (e.g., travel versus foraging states), our approach revealed relevant scales of 331 

predator-prey relationships.  332 

Prey quality is also crucial to energetic gain, and humpback whales may target larger and 333 

reproductive krill with higher energetic value, if available (Cade et al., 2022). For the purposes 334 

of this study, all krill were considered of equal quality, and we applied NASC as a proxy for krill 335 

relative abundance as the sole krill metric. However, krill quality, aggregation structures, and 336 

biomass density have been shown to shape whale foraging behaviors and patch selection (Cade 337 

et al., 2021; Miller et al., 2019). Differences between the nutritional value of krill species and 338 

developmental stages can have significant consequences for the foraging success and 339 

distributions of humpback whales, which may preferentially target the larger, more lipid-rich T. 340 

spinifera krill, like other whale species (Fiedler et al., 1998). Krill nutritional quality, swarm 341 

structure, and the impact of changing ocean conditions on these foraging characteristics warrant 342 

further investigation. In addition to humpback whales, blue (Balaenoptera musculus) and fin 343 

(Balaenoptera physalus) whales also forage on krill in the region (Fiedler et al., 1998). While our 344 

sample size of blue and fin whales was too small to perform the same hierarchical scale analysis 345 

for these species individually, analysis of all rorquals at the 5 km scale echoed the relationships 346 

seen for humpback whales (see Supplementary Material), and future work could determine 347 

whether these species show similar spatial relationships. Fin and blue whales are larger, and 348 

increased body size both facilitates and requires increased prey capture (Goldbogen et al., 2019). 349 

Thus, blue and fin whales foraging in the NCC may require larger-scale prey patches than 350 

humpbacks, and higher prey densities within them to meet their energetic needs. 351 

These findings are salient to ecological relationships in the NCC ecosystem, and to 352 

management efforts across the CCLME. Just as prey distributions are dynamic, so are the 353 
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responses of their predators and the needs of adaptive ecosystem management. Increased 354 

awareness of humpback-krill relationships can support tools and resources that benefit marine 355 

resource management (Rockwood et al., 2020; Santora et al., 2020). Incorporating prey data  356 

may improve modeling efforts and predictions of how these animals and ecosystems will 357 

respond to ongoing and future ocean changes (Derville et al., 2022). As the 5 km model yielded 358 

the strongest relationship between humpback whales and krill relative abundance, we 359 

recommend that prey data at that scale be incorporated into future models and considered for 360 

management applications in the NCC, such as entanglement mitigation efforts and fisheries 361 

planning. Considering relationships at this scale can allow us as ecosystem observers to find a 362 

compromise on the problem of scale, bridging the distance between what the whale experiences 363 

in the environment and what we can accurately describe and manage. 364 

 365 

Supplementary Material 366 

A table and figure describing the supplementary models are available at ICESJMS online.  367 
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Figures and Tables 528 

Table 1.  Concurrent active acoustics and whale observation data collection (km and days) per 529 

cruise, and all rorqual whale and humpback whale groups observed and included in models. 530 

 531 

 
Year  

 
Season 

 
Effort (km)  

 
Effort 
(days) 

 
Humpback whale 

groups used in this 
study 

(Model 1-4 / 5) 

 
All rorqual whale groups / 
average group size used in 
rorqual-krill models (see 
Supplementary Material)  

2018 
 
 
  

Summer  3,516.9 9 6 / 10 21 / 1.9 

Fall  2,561.2 9 1 / 3 9 / 1.1 

2019 Summer  3,015.0 10 0 0 

Fall  1,952.5 9 3 / 9 22 / 2.4 

2020 Fall  3,030.3 11 8 / 34 73 / 1.2 

2021 Summer  257.6 10 0 5 / 1.7 

2022 Summer  3,562.1 12 18 / 47 102 / 1.2 

Fall 1,392.4 5 1 / 2 3 / 1 

 532 

 533 

 534 

 535 

 536 



 

Table 2.  Summary of humpback whale-krill association models at each spatial scale (buffer 537 

radius). For each model, we report: conditional and marginal deviance explained, the number of 538 

humpback whale groups included (Nwh), and the absence, presence, and total number of data points in 539 

each model (N). For each smooth term (e.g., NASC 30-50 m, NASC 50-100 m, etc.) and the random effect 540 

(survey), we report: estimated degrees of freedom (edf) and F-statistics. All approximate significance of 541 

smooth terms showed p-values <0.0001. 542 

 543 

 
Scale  

 
Model 

 
Buffer 
radius 

 
NWH 

 
N 

(absence, 
presence) 

 
Conditional 

deviance 
explained 

 
Marginal 
deviance 
explained 

 
NASC 
30-50 

m 

 
NASC 

50-
100 m 

 
NASC 
100-

200 m 

 
NASC 
200-

300 m 

 
Survey 

(re) 

Very 
fine  

1 1 km 29 604849 
(594477, 
10372) 

14.1% 1.34% edf =  
2.264, 

F = 
236 

edf = 
1.002, 
F =   
265 

edf = 
3.918, 

F = 
782 

edf = 
2.652, 

F = 
330 

edf = 
6.711, 

F = 
1573 

Very 
fine 

2 2 km 29 593845 
(569424, 
24421) 

18.7% 2.22% edf = 
2.787, 

F = 
2625 

edf = 
1.230, 

F = 
2767 

edf = 
3.955, 

F = 
4225 

edf = 
3.686, 

F = 
1649 

edf = 
6.743, 

F = 
3501 

Fine 3 5 km 29 565945 
(508332, 
57613) 

25.2% 3.82% edf = 
2.894, 

F = 
3077 

edf = 
2.948, 

F = 
3007 

edf = 
3.891, 

F = 
8926 

edf = 
3.708, 

F = 
6964 

edf = 
6.769, 

F = 
7541 

Meso 4 20 km 29 580710 
(386409, 
194301) 

36.0%  2.50% edf = 
2.961, 

F = 
2399 

edf = 
2.980, 

F = 
2350 

edf = 
2.995, 

F = 
3606 

edf = 
2.983, 

F = 
20990 

edf = 
6.790, 

F = 
20986 

Fine 
(final 

model)  

5 5 km 79 649376 
(508332, 
141044) 

26.7% 3.36% edf = 
3.908, 

F = 
2838 

edf = 
3.577, 

F = 
2761 

edf = 
3.882, 

F = 
9401 

edf = 
3.680, 

F = 
9063 

edf = 
6.787, 

F = 
14624 

 544 



 

 545 

Figure 1. Concurrent echosounder data and whale surveys in the NCC region off the northern 546 

California, Oregon, and Washington coasts (U.S. west coast; gray lines). Humpback whale groups 547 

included in models 1-4 are shown as red dots, additional humpback whale groups included in the final 548 

model (model 5) are shown as pale blue dots, and other rorqual whale observations are shown as gray 549 

dots (see Supplementary Material for results of rorqual-krill models). Land is shown in black and 550 

isobaths (50, 100, 500, 1,000 and 1,500 m deep) are represented with light gray line.551 



 

 552 

Figure 2.  An example of ship survey effort where concurrent echosounder and whale survey data 553 

were collected (black lines), a humpback whale observation (black point) and buffer radii drawn at 554 

increasing spatial scales around the whale sighting (circles color coded from 1 km to 20 km).555 



 

 556 

Figure 3. Average depth distribution of krill relative abundance (NASC) at each buffer radius 557 

scale surrounding the sighted humpback whales. Standard deviations are shown as horizontal bars 558 

across each point. 559 



 

 560 

Figure 4. Humpback whale-krill relationships modeled across multiple depth bins and spatial 561 

scales. Response curves represent the effect of the smooth function upon the trend in humpback whale 562 

presence, with higher values indicating higher predicted probability of occurrence. Shaded ribbons 563 

represent the 95% confidence intervals colored per fitted trend. All variables have significant p-values 564 

<0.0001. 565 



 

 566 

Figure 5. Humpback whale-krill relationships modeled across depth bins at the 5 km scale in 567 

model 5. Response curves represent the effect of the smooth function upon the trend in humpback whale 568 

presence, with higher values indicating higher predicted probability of occurrence. Shaded ribbons 569 

represent the 95% confidence intervals colored per fitted trend. All variables have significant p-values 570 

<0.0001. The rug plot along the x-axis represents the distribution of the krill NASC data across all depth 571 

bins. 572 



 

Supplementary Material 573 

Table S1.  Summary of rorqual whale-krill association models at each spatial scale (buffer 574 

radius). For each model, we report: conditional and marginal deviance explained, the number of whale 575 

groups included (Nwh), and the absence, presence, and total number of data points in each model (N). For 576 

each smooth term (e.g., NASC 30-50 m, NASC 50-100 m, etc.), and the random effect (survey), we report: 577 

estimated degrees of freedom (edf) and F-statistics. All approximate significance of smooth terms showed 578 

p-values <0.0001. 579 

 
Scale  

 
Model 

 
Buffer 
radius 

 
NWH 

 
N 

(absence, 
presence) 

 
Conditional 

deviance 
explained 

 
Marginal 
deviance 
explained 

 
NASC 

30-50 m 

 
NASC 

50-
100 m 

 
NASC 
100-

200 m 

 
NASC 
200-

300 m 

 
Survey (re) 

Very 
fine  

S1 1 km 46 609261 
(594477, 
14784) 

15.6% 1.05% edf=   
2.277, 

F = 232 

edf = 
1.851, 

F 
=  343 

edf = 
3.909, 

F = 
568.3 

edf = 
3.137, 

F = 
277 

edf =  
6.884, 

F = 1951 

Very 
fine 

S2 2 km 80 620041 
(569424, 
50617) 

21.2% 1.80% edf = 
2.872, 

F = 5118 

edf = 
1.967, 

F = 
7943 

edf = 
2.998, 

F = 
5284 

edf = 
3.914, 

F = 
5304 

edf =  
6.903, 

F = 6972 

Fine S3 5 km 134 723978 
(508332, 
215646) 

27.9% 2.59% edf=   
3.923, 

F = 3414 

edf = 
2.975, 

F = 
5323 

edf = 
3.612, 

F = 
12799 

edf = 
3.541, 

F = 
14544 

edf =   
6.917, 

F =  18117 

Meso S4 20 km 178 1302550 
(386409, 
916141) 

33.9%  1.60% edf = 
3.829, 

F = 1897 

edf=   
3.944, 

F = 
21315 

edf = 
2.997, 

F = 
2462  

edf = 
2.985, 

F = 
18754 

edf =   
6.927, 

F = 47413 

580 



 

 581 

 582 

Figure S1. All rorqual whale-krill relationships modeled across multiple depth bins and spatial 583 

scales. Response curves represent the effect of the smooth function upon the trend in rorqual whale 584 

presence, with higher values indicating higher predicted probability of occurrence. Shaded ribbons 585 

represent the 95% confidence intervals colored per fitted trend. All variables have significant p-values 586 

<0.0001. 587 
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