

SOUTH EPO SWORDFISH ASSESSMENT (SAC-14-15)
Carolina Minte-Vera, Mark N. Maunder, Haikun Xu, Cleridy E. Lennert-Cody, Juan L. Valero, and Alexandre Aires-da-Silva

Outline

- Timeline
- Conceptual model
- Tagging studies
- Data
- Stock assessment
- Assumptions
- Results
- Research recommendations

Timeline: it takes a planet..

- Previous assessment 2011 (SAC-02-07)

Number of external participants: 52
IATTC staff: 22

ECU, 11

Conceptual model for S EPO

Similar seasonal movement from
foraging to putative spawning areas
in the N EPO (Sepulveda and Aalbers)

Females with
high GSI
\square Females with
lower GSI

Early life
history stages

Conceptual model

Sepulveda and Aalbert (2020 SWO-01)

Tracey and Pepperell (2018) in Moore (2020 SWO-01)

Zárate et al (SWO-01)

Tagging in the coast of Chile

Data

- Catches

- Submission in compliance with Resolution C-03-05
- Special submission by Chile catches by quarter
- Special submission by Ecuador catches by trip
- FAO database
- Literature search

Indices of abundance

- Special submission by Chile of 2° by 2° data and estimation of indices by Chilean colleagues (2000-2019)
- Collaboration with Japan to analyze set-by-set operational level data (1975-2019)
- Submission in compliance with Resolution C-03-05 for Japan (level 2 data)
- Memorandum of understanding with Korea - set-by-set operational level data (1976-2018)
- Special submission by Spain of set-by-set data with positive catches of swordfish (2006-2019)
- Composition data
- Age composition data by sex for Chile (gillnets and longline) (2000-2019)
- Length composition data for Chile (2000-2019)
- Length composition data for Ecuador (20162020)
- Length composition for distant water fleets in compliance with Resolution C-03-05
- Standardized average weight
- Collaboration with Japan

Catch estimation

Annual catches of swordfish in the EPO south of $10^{\circ} \mathrm{N}$ in weight by fishing gear and CPC

Indices of abundance: 2011 assessment

Japanese longline CPUE

Updated indices from Japanese fleet SAC-13-INF-N

New indices:

* early
- late
- mid

2011 indices:

Indices of abundance

fleet
J JPN_early - JPN_ear - JPN_late
leet
JPN_early JPN_mid JPN late

Indices of abundance

Indices of abundance

CHL Driftnet

Indices of abundance: Japanese longline CPUE

Average density estimated from spatio-temporal model (SAC-13-INF-N)

Early: 1975 to 1993

Mid: 1994-2009

Late: 2010 on

Increase in connectivity in areas of high density

Models: reflect the hypotheses about the stock

Stock structure hypotheses
2009-2018 Distribution of industrial longline catches

Stock assessment models - main assumptions

- Model period 1945 - 2019, starts from virgin
- Annual model with 4 seasons
- Recruitment in seasons 1 and 2
- Beverton-Holt recruitment function (steepness $\mathrm{h}=1$, sensivity $\mathrm{h}=0.75$)
- Natural mortality 0.4 year- 1
- Fisheries:
- H1 - as 2011 assessment
- Models 0 to 4: 21 fisheries defined by area, gear, fleet origin (coastal, Spain, other distant water fleets)
- Selectivities (logistic, double normal, splines)
- Fit to indices, age and length composition data
- Data reweighting using Francis approach

Model implementation

Hypothesis	Model	Fisheries	Catches	Indices	Recruitment
Updates 2011	H1	$=2011$	EPO, south of $5^{\circ} \mathrm{S}$	JPN	RO + deviations
"base model" used to derive M1 to M4	MO	Tree analysis	EPO, south of $10^{\circ} \mathrm{N}$	JPN, SPN, CHL	RO + deviations
Productivity	M1	Tree analysis	EPO, south of $10^{\circ} \mathrm{N}$	JPN, SPN, CHL	RO*trend + deviations
Availability	M2	Tree analysis	EPO, south of $10^{\circ} \mathrm{N}$	none	RO + deviations
Both	M3	Tree analysis	EPO, south of $10^{\circ} \mathrm{N}$	JPN, SPN, CHL	RO*trend + deviations
Stock structure	M4	Tree analysis	East of 170 W , South of $10^{\circ} \mathrm{N}$	JPN, SPN, CHL	RO + deviations

Fishery definitions: Tree analysis (Models 0 to 4)

- Analysis
- Length-composition data from Japan, Spain, Chile, Ecuador
- Regression tree methods
- Latitude, longitude, quarter, and cyclic quarter
- Compromise between explaining data and number of fisheries
- Results
- First split $100^{\circ} \mathrm{W}$
- Second split at $20^{\circ} \mathrm{S}$, east and west of $100^{\circ} \mathrm{W}$
- 4 areas
- 21 Fisheries defined by area, gear, fleet origin (coastal, Spain, other distant water fleets)

Tree analysis: results consistent with conceptual model

Biological assumptions - all models

Results

All model input files and output results for this assessment are available in html and pdf formats.

https://www.iattc.org/StockAssessments/2022/SWOWebsite/SWO_South_EPO_2022.htm
Benchmark assessment of swordfish in the South EPO 2022

SS3 plots, input and output files for the models that compose the stock assessment

Model	Stock strueture hypothesis	Produetivity/Availability hypothesis	Label in figures	Interpretation	Model description
H1	H1: The stock is distributed south of 5° and east of $150^{\prime} \mathrm{W}$	Updates the 2011 assessment model: shows an increasing trend in recruitment	H1	Increase in catches with increase in indices are explained by increase in recruitment deviations	This model makes similar assumptions than the 2011 assessment model (Hinton and Maunder 2011), with similar fishery definitions and indices
Model 0	H2: The stock is distributed south of $10^{\circ} \mathrm{N}$ and east of $150^{\circ} \mathrm{W}$. This hypothesis fis considered as the reference case	Initial Reference Model: shows an increasing trend in recruitment	Mo	Increase in catches with increase in indices are explained by increase in recrultment deviations)	New fishery definitions based on tree analyses, new indices of abundance obtained using spatiotemporal models. This model is modified to produce Models 1 to 4
Madel 1	H2	1.Real increase in abundance	M1_Productivity	There is an increasing trend in productivity due to increasing recruitment.	A regime shift in InRo is estimated, as a trend starting in a fixed lower productivity value (InRo for a model for 1945 to 1993]
Model 2	Hz	2.Increased catchability (avaliability)	M2_Availability	Increasing indices may be due to a general increase in availability of the fish to all the gear. The indices do not represent the abundance of the population.	The catch curve model based on MO is estimated: The model is fit only to mean weight, age, length, and generalized size-composition data. The change in availability to the indices is computed as the difference from the expected values for the indices and the observed indices
Modol 3	H2	3. Increase both in abundance and aveilability	M3_Productivity and availability	Factors that increase availability may also increase abundance	A model like M0 is estimated, the changes in availability are obtained by estimating time-varying catchability parameters for all indices except
Model 4	H13: The stock is distributed south of $10^{\circ} \mathrm{N}$ and east of 170 W	4. Stock structure and connectivity	M4_Connectivity	Connectivity from the equatorial area and the southem EPO seems to have increased after 2010, perheps connectivity between WCPO and EPO also increased.	Like MO but include the catches in the CPO (areas 6 and 7 in Figure 2 stock structure hypothesis H3)

Fits to composition data

Model 0

Fisheries

Indices of abundance

Fit to indices of abundance

Model 2 - Availability

Example ESP Index Q1

Observed index

Expected value from model 2
catchability

Trends in catchability (Model 2)

Catchability $=$ expected index - observed index
-- I1_Chile_Q2

Fits to composition data

Model 1 - increase in abundance Some size composition data is not consistent with this hypothesis

Results - recruitment

MO Initial reference model-Modelo de referencia inicial
M1 Productivity-Productividad

Results0 - spawning biomass

Fisheries impact

Results: depletion

Results: fishing intensity

Fishing intensity (1-SPR)-Intensidad de pesca (1-SPR)
\rightarrow M1 - Productivity-Productividad
\rightarrow M2 - Availability-Disponibilidad

- M3 - Productivity and availability-Productividad y disponibilidad
- M4 - Conectivity (larger stock)-Conectividad (población más grande)
$\rightarrow \mathrm{H} 1$ - Smaller stock-Población más pēqueñ̄ā
--- F20\% LRP-PRL F20\%
- F50\% TRP-PRO F50\%
- F40\% TRP-PRO F40\%

Phase plots

-TRP-PRL
--LRP-PRO
^ M1 - Productivity-Productividad M3 - Productivity and availability

- M3 - Productividad y disponibilidad

H1 - Smaller stock-Población más pequt

- MO nat mort 0.2
- M2 - Availability-Disponibilidad
- M4 - Connectivity (larger stock)
- Conectividad (población más grand M0 estM
- MO h=0.75

Illustrative LRP $=20 \%$ SSB,F=0

Spawning biomass / illustrative target refence point

Discussion

The increases in recruitment and subsequent increase in biomass estimated by the integrated model maybe due to:

- Real increase in abundance
- Increase in prey

Discussion: support for increase in abundance - increase in preys

Discussion

The increases in recruitment and subsequent increase in biomass estimated by the integrated model maybe due to:

- Real increase in abundance
- Increase in prey
- Increase in availability
- Indices derived from different fleets and gear show increase in density: environment (warm-core eddies and frontal zones)? Fishing technology (e.g. oceanographic analysis)?
- Increase both in abundance and availability
- Stock structure and connectivity
- Connectivity from the equatorial area and the south sub tropical EPO seems to have increased after 2010, perhaps movement from WCPO to the EPO
- Indices derived from fleet in the WCPO show increase in density at similar times that the indiestin the EPO

Conclusion

- The pattern of increase in indices of abundance an increase in catches dominated the assessment
- The increase in productivity hypothesis is not supported by some of the composition data, but it cannot be discarded.
- This can be the result of model misspecification which, if addressed and once resolved, may reconcile the data components.
- Regardless of the high uncertainty, all the models estimated that the stock did not breach the illustrative biomass and fishing limit reference points but may be approaching the target reference points.
- The stock should be closely monitored

Future work, research recommendations and data submission

Catch: report data by gear, quarter, with indication of the area of origin and in the original unit they were recorded (weight , numbers , or both)

Composition data: Add information on sample size and spatial distribution of samples. Obtain size and sex information. The only sex-specific data available for this assessment were the data for the Chilean fleet.

Indices of abundance: Include catchability variables (e.g., light stick, use oceanographic interpretation services) and changes in target

Spatiotemporal models: include the western and central Pacific Ocean

Future work, research recommendations and data submission

Stock structure: implement a well-designed collaborative electronic tagging study associated with tissue sampling for genomic analysis, which should tag fish between longitudes $150^{\circ} \mathrm{W}$ to $130^{\circ} \mathrm{W}$, both in the equatorial areas and in the temperate areas around $35^{\circ} \mathrm{S}$ to 40° hypotheses could be modelled more adequately.

Habitat and preys: identify favorable oceanographic conditions for high swordfish abundance and CPUE (e.g warm-core eddies) and track changes of those conditions over time should be done to evaluate if the hypothesis of increase in availability is plausible.

Modelling: Multispecies models to investigate predator-prey dynamic maybe useful

Questions

