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Summary 

• The objective of this work is to assist the IOTC Scientific Committee in providing robust
management advice for yellowfin tuna by evaluating alternative assessment methods and
scenarios that reflect uncertainty about the assumptions and datasets used in the assessment.

• Specific tasks are to agree datasets (CPUE series and catch series) based on alternative
assumptions about mis-reporting, run biomass dynamic based stock assessments.  and
compare the results to the base case SS3 assessment using a common set of diagnostics.

• The report summarises the analysis and provides a set of diagnostics that can be used for
comparison across different modelling platforms

• All scenarios other than 2 (high productivity and the reference case fitted to the estimate of
biomass from stock synthesis) indicate that the stock is overfished and experiencing
overfishing.

• The work is based on data available on July 8th, 2019.
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Executive Summary 
 
Seven alternative scenarios were developed for yellowfin based on hypotheses that examined the 
impact of high grading on the Catch Per Unit Effort (CPUE) series that are used as indices of 
abundance in the assessment. Five of these were based on the LL CPUE indices with different 
assumptions about high grading and the length of the time series used. The initial model set up (i.e. 
the base case) included the PS index as well as the LL indoices. In addition scenario that included 
only the PS CPUE series was run. The scenarios with the PS index were discounted, however, as the 
diagnostics indicated poor fit due to little informationon on stock abudance in the PS series. In the 
case of the fit to the PS series alone  R0 parameter that influences B0 (the scale parameter) was 
unrealistically large, and so the stock was unaffected by catches.  
 
Alternative models therfore  focussed on the LL series with different assumptions. These series were 
then fitted to a surplus production model (JABBA, Winker, et al., 2018). Diagnostics indicated that 
the indices were highly correlated with each other and were also positively correlated with Stock 
Synthesis (SS3, Methot and Wetzel, 2013) estimates of stock abundance. This supports the 
assumption that the biomass dynamic model and the integrated assessment inputs are consistent. 
Furthermore the absence of lags between the indices supports the use of a biomass dynamic without 
regional structure, since there does not appear to be any spatial hetrogeneity of year classes.   
 
Diagnostics used to evaluate goodness of fit based on model residuals, indicate that there is a 
systematic over or underprediction of of relative abudance by the indices in the different areas, other 
than the case of region 3 with vessel effects. The results from hindcasting suggested that the 
assessment has poor prediction skill in recent years as it under predicts abundance by a large 
proportion. This could be due to changes in catchability or reporting.  An examination of process 
error, i.e. the difference between the expected and realised productivity  indicate that there are 
potentially regime shifts due to changes in the distribution of the stock in recent years, particularly in 
Regions 2 and 4.  
 
Other than under the high productivity scenario, where the population growth rate (r) is greater than 
1.2, and the scenario fitted to the overall biomass trajectory from the last integrated assessment, all 
models indicate that the stock is overfished and experiencing overfishing. 
 
The tools presented here (along with the R scripts developed) provide an generic set of diagnostics 
that allows models to be validated using prediction residuals and prediction skill. Importantly the 
framework allows model performance to be compared across different platforms with differeent 
model assumptions and datasets In the biomass dynamic model case examined here model fits are 
primarily driven by the indices of abundance, but the same diagnistics can be used  for model with 
different structures, e.g. integrated models, allowing them to be compared to the biomass dynamic 
model scenarios. 
 
 

  



Introduction 
 
To assess the status of the Indian Ocean stock of yellowfin tuna the Scientific Committee has relied 
mainly on Multifan-CL and and Stock Synthesis III. These are both statistical, length-based, age-
structured models, that integrate fishery data including total catch, effort, and length-frequency data, 
from all Indian Ocean fleets catching yellowfin tuna. The IOTC Scientific Committee, however, has 
identified several issues that may hamper its capacity to provide sound advice for yellowfin tuna. In 
particular there are poor estimates of catch for many Indian Ocean fleets; significant changes in 
longline time-area coverage and non-reporting of discards (high-grading), that may affect the quality 
of the indices of abundance derived from longline logbook data, especially over the last decade 
(IOTC, 2019a). Very little length-frequency data are available from the longline fleets and their is a 
lack of small lengths in samples due to the alleged non-reporting of discards (at least since 2004 due 
to high-grading), and a lack of catch-and-effort data with which to derive indices of abundance.  
 
There are also various issues related to the configuration of the models and interpretation of model 
results. Therefore different stock assessment modelling approaches were examined in the 2018 Indian 
Ocean yellowfin assessment. Although Stock Synthesis 3 was applied there were major problems due 
to conflicting data inputs, choice of data weighting, changes in catchability, uncertainty in size data 
and changes in selectivity over time particularly since the development of the industrial purse seine. 
The IOTC Scientific Committee therefore recommended that alternative, less complex, stock 
assessment methods should also be tried to assess the stock of yellowfin tuna. 
  
The objective of this work therefore is to assist the IOTC Scientific Committee in providing robust 
management advice for yellowfin tuna in 2019, by evaluating alternative assessment methods and 
scenarios that reflect uncertainty about the assumptions and datasets. Specific tasks are to agree 
datasets based on alternative assumptions about mis-reporting, run biomass dynamic based stock 
assessments, and compare the results to the base case SS3 assessment using a common set of 
diagnostics. Diagnostics include an examination of model and prediction residuals, estimation of 
prediction skill, and a comparison of production functions process error and stock status relative to 
reference points. 

 
 

Material and Methods 
 

Material/Data 

It was assumed that there is a single yellowfin stock with no spatial structure and an annual time step 
was assumed. 

Assessments specifications  

The assessment was conducted using a biomass dynamic model with a Pella Tomlinson production 
function so that alternative assumptions about productivity, stock status and reference points can be 
evaluated. The assessment model used was JABBA (Winker et al. 2018) which also allows process 
error to be fitted.  
 
The original specifications for the indices of abundance were reviewed since they need to provide 
plausible and consistent hypothesis based on the available data. 



 
Assessment assumptions were 

o Stock structure: single Indian Ocean YFT stock 
o Spatial stratification: Whole ocean 
o Temporal stratification: Year 
o Fisheries: All fisheries combined 
o Time series for CPUEs: Early 1950’s-2018 (based on aggregated data without 

vesselleffects); 1972-2018 (2 values of q i) for data from 1972-2018 with no vessel 
effects, and ii) from 1979-2018 with vessel effects);  

o Catch data: time-series of (best-estimate) catch published by the IOTC Secretariat  
o CPUE/Indices of abundance:  

▪ joint LL index, as provided by  IOTC, (2019b);  
▪ joint-CPUE LL index corrected for high grading (IOTC, 2019b);  
▪ PS indices, as provided by EU scientists 

o Considering the findings from Geehan  and Hoyle  (2013), analyse the time-series of 
length frequency data from Taiwan, Japan, Seychelles, and the Republic of Korea, as 
available at the IOTC, in order to quantify the number of yellowfin tuna discarded which 
has been potentially lost from length samples, due to high-grading. Based on this, develop 
scenarios for adjusting the joint-Asian longline index for high-grading and examine in the 
assessments. Note this will affect both the abundance index and the catch series used in 
these assessments. However, since these are small fish (discards) the effects on biomass 
are marginal (numbers change by 5-10% so the biomass changes are smaller, i.e. <5%).  
We therefore did not change the estimates of biomass that were used in the model fitting 
exercise. 

o Age and Length data: Not included 
o Tagging data: Not included  
o Environmental indices: Not included 
o Model structure and assumptions: equivalent life history assumptions to those used in 

SS3 assessment in 2018 
o Any other alternative indices of abundance, where available and appropriate.   

 
CPUEs/Indices of abundance: joint LL index, as provided by IOTC (2019b); joint-CPUE LL index 
corrected for high grading (one or more scenarios, as required); PS index(es), as provided by EU 
scientists (the fishery dependent index may be subject to bias as well as catch estimates are likely  
doto be wrong for the YFT). 

CPUE indices were computed by IOTC (2019b). accounting for vessel, area and high grading effects. 
5 scenarios were examined for the 4 regions used in the assessment. The following were developed: 

1.  Scenario 1: Reference case model from updated data for Synthesis, accounting for vessel 
effects from 1979 onwards and non-vessel effects from 1972-1979. 

2.   Scenario 2: Vessel effects from IOTC (2019b) from 1979-2018 for all areas using Area 2 
(Hoyle analysis) representing Area 1 in the assessment. 

3.  Scenario 3: Vessel effects from IOTC (2019b) from 1979-2018 for all areas using Area 7 
(Hoyle analysis) representing Area 1 in the assessment. 



4.  Scenario 4: Longer term series with no vessel effects from early 1950’s to current period using 
aggregated data. Area 2 (IOTC, 2019b) representing Area 1 in the assessment. 

5.  Scenario 5: Longer term series with no vessel effects from early 1950’s to current period using 
aggregated data. Area 7 (IOTC 2019b) representing Area 1 in the assessment. 

Scenarios for high grading are mostly occurring in Area 2 and Area 7 (IOTC, 2019b). For further 
details, refer to the paper there as there are many reasons for these changes.  

It was however notedthat the LL indices incorporate a correction for high grading but that 
correction is based on logbook reports and it is very likely that those reports do not contain all fish 
discarded as logbooks usually miss quite a lot of fish. This is confirmed in the publication that uses 
observer data from previous years that mentions that discards may be as much as 40% in some 
areas. In other oceans (for eg. Western central Pacific), the Electronic Monitoring Systems (EMS) 
confirmed that most discards are not recorded on logbooks. Thus, the real magnitude is probably 
unknown, and relying solely on LL indices may be subject to large biases. 

These hypothesized changes are examined for diagnostics and performance in how the model does, 
and what is most representative of the stock. 

Model structure and assumptions: As a biomass dynamic assessment model was used priors for r, 
K and the shape of the production function were derived for assumptions about natural mortality, and 
stock recruitment. Details of all models will be provided at the meeting on the working group server. 

Scenarios 
 
The biomass dynamic model was used to evaluate the impact on the assessment of alternative 
assumptions about the indices of abundance used for calibration. A base case, which included the 
long line and purse seine indices, was run first to compare the impact on the assessment of indices 
based on the different gears. 
 
Considering the findings from Geehan and Hoyle (2013)  the time-series of length frequency data 
from Taiwan, Japan, Seychelles, and the Republic of Korea, as available at the IOTC, were analysed 
in order to quantify the number of yellowfin tuna discarded and which have potentially been lost 
from the length samples, due to high-grading. Based on this, scenarios were developed to adjust the 
joint-Asian longline index for high-grading for examination in the assessment.   
 
The CPUE were adjusted based on the discarding rates estimated during the Joint CPUE workshop.  
The estimates were considered preliminary and were what was available to the analysts on July 8th, 
2019. Quarter based CPUE’s developed by IOTC (2019b) were averaged for a yearly index that was 
used in the model fitting. Discard rates were 5-10% in recent years, but as this is in numbers are 
mostly small fish, we used the reported biomass estimates in model fitting. 
  



Methods 

When fitting stock assessment models, it is assumed that CPUE time series are indices of relative 
abundance. If indices are in conflict, however, then model estimates may be uncertain or biased. 
Therefore the CPUE series used were first summarised and compared with each other. If indices are 
not correlated this may suggest alternative data weightings and/or runs. A reason for poor correlation 
may be because indices represent different age classes or due to spatial hetrogenity. In which case 
there may be lags between indices, which can be evaluated by plotting cross-correlations.   

For the biomass dynamic model two reference case scenarios were developed for comparison with 
the SS base case. The reference cases were fitted using the SS estimates of SSB and biomass, i.e. used 
as perfect indices of abundance. This provides a benchmark against which the scenarios with the 
biomass dynamic assessment scenarios based on alternative datasets and assessment model 
assumptions can be compared. Following this biomass based assessments scenarios were developed 
based on alternative CPUE series and assumptions about productivity. 

A common set of diagnostics, applicable to all stock assessment methods, both biomass and age 
based, are used to compare model fits. These include an examination of model and prediction 
residuals using runs tests, estimation of prediction skill, and a comparison of production functions 
process error and stock status relative to reference points. 

Diagnostic Procedure 

Hindcasting (Kell et. al. 2016) was used to estimate prediction residuals and prediction skill. 
Hindcasting was used for model validation as it allows comparisons to be made across model 
structures and datasets. Validation examines if a model family should be modified or extended and is 
complementary to model selection and hypothesis testing. In comparison model selection searches 
for the most suitable model within a family, whilst hypothesis testing examines if the model structure 
can be reduced. This will be important as it will allow alternative model frameworks to be compared 
and valiadated in a working group setting 

A hindcast is a multi-step prediction where a model is fitted using a tail-cutting procedure, where data 
are deleted from year t−n to t and then using the data from year 1 to t-n-1 to make predictions of what 
will happen in years t-n to t. Hindcasting is a special form of cross validation and evaluates the 
predictive error of a model by testing it on a set of data not used in fitting. There is often insufficient 
data, however, in stock assessment datasets to allow some of it to be kept back for testing. A more 
sophisticated way to create test datasets is, like the jackkife, to leave out one (or more) observation 
at a time. Hindcasting also allows prediction residuals to be calculated, i.e. the difference between 
fitted and predicted values where the later is calculated from the out-of-sample predictions. 

The expected (the form of the production function) and the stochastic dynamics (time series) will be 
compared across models,  the latter will include an examination of process error. The uncertainty in 
stock status due to parameter and model uncertainty will be compared in the form of the Kobe phase 
plot. 

Two other diagnostics are produced based on the fits to the index of abundance: 



1 Runs test: This evaluates whether the data is randomly distributed around a central tendency without 
any systematic patterns. 

2. Regime shifts: determines if there are systematic patterns do we observe this by regimes. We can 
then hypothesize if these patterns are driven by environmental changes or by changes in q (fishery 
driven).  



Residual Analysis 

Analysis of residuals is a common way to determine a model’s goodness-of-fit (Cox and Snell, 1968). 
For example non-random patterns in the residuals may indicate model misspecification, serial 
correlation in sampling/observation error, or that heteroscedasticity is present. Various statistics exist 
to evaluate the residuals for desirable properties and nonparametric tests for randomness in a time-
series include: the runs test, the sign test, the runs up and down test, the Mann-Kendall test, and 
Bartel’s rank test. 

If the process of interest shows only random variation, the data points will be randomly distributed 
around the median. Random meaning that we cannot know if the next data point will fall above or 
below the median, but that the probability of each event is 50%, and that the data points are 
independent. Independence means that the position of one data point does not influence the position 
of the next data point, that is, data are not auto-correlated. If the process shifts, these conditions are 
no longer true and patterns of non-random variation may be detected by statistical tests.  

Non-random variation may present itself in several ways. If the process centre is shifting due to 
improvement or degradation we may observe unusually long runs of consecutive data points on the 
same side of the median or that the graph crosses the median unusually few times. The length of the 
longest run and the number of crossings in a random process are predictable within limits and depend 
on the total number of data points in the run chart (Anhoej, 2014). 

A shift signal is present if any run of consecutive data points on the same side of the median is longer 
than the prediction limit, round(log2(n) + 3). Data points that fall on the median do not count, they 
do neither break nor contribute to the run (Schilling, 2012). A crossings signal is present if the number 
of times the graph crosses the median is smaller than the prediction limit, qbinom(0.05, n - 1, 0.5) 
(Chen, 2010). n is the number of useful data points, that is, data points that do not fall on the median. 
The shift and the crossings signals are based on a false positive signal rate around 5% and have proven 
useful in practice. 

Prediction Skill          

The provision of fisheries management advice requires the assessment of stock status relative to 
reference points, the prediction of the response of a stock to management, and checking that 
predictions are consistent with reality. To evaluate uncertainty often a number of scenarios are 
considered corresponding to alternative model structures and dataset choices (Hilborn, 2016). It is 
difficult, however, to empirically validate the various stock assessment models as it is seldom possible 
to observe fish populations directly. Stock assessments, however, sometimes proven to be wrong in 
retrospect, due to poor model assumptions or to data that do not reflect the key processes (Schnute 
and Hilborn, 1993). Therefore techniques such as retrospective analysis, where a model is fitted to 
increasing periods of data to identify systematic inconsistencies (Mohn, 1999) 

A key concept to understand therefore in the evaluation of prediction is the concept of skill. A 
prediction is said to have skill if it improves upon a naive baseline. A naive baseline is the predictive 
performance that you could achieve without really having any expertise in the subject. For instance, 
in weather forecasting a naive forecast could be the weather tomorrow will be the same as today. 
Prediction skill is a measure of the accuracy of a forecast compared to an observation or estimate of 
the actual value of what is being predicted (Huschke, 1959), and can be used to compare alternative 
models or observations to a reference set of estimates or data (e.g., Jin et al., 2008; Weigel et al., 
2008; Balmaseda et al., 1995). 

If data are regarded as being representative of the dynamics of the stock then they can be used as a 
model-free validation measure (Hjorth, 1993), and the best performing scenarios (e.g., choice of 
models and data) can be identified by comparing predictions with observations. In contrast quantities 



such as stock biomass and fishing mortality are model estimates not data and so cannot actually be 
observed so if estimates from a stock assessment model are compared this is model-based validation. 

To evaluate prediction skill a one-step-ahead projection was performed and projetion residuals 
estimated for the indices of abundance. The first step is similar to a retrospective analysis where the 
final year(s) of data are deleted and the model refitted, The fitted model is then projected forward 
over the omitted years and predictions of the missing observations made. The difference between the 
observation and the predictions are the prediction residuals. If a model is overfitted the variance of 
the prediction residuals will be greater than the model residuals. While if non-stationarity is present, 
i.e. a regime shift has occurred, then the recent prediction residuals may show a  pattern that is not 
evident in the model residuals. In this case the predictions were made for a single year, hence one-
step-ahead.  

Results 

Indices of abundance Exploratory Data Analysis 

The indices of abundance used in the assessment are shown in Figure 2 by fleet and scenario; Figure 
3  summaries the abundance from 1979 onwards for the same indices. The trends in the indices are 
compared in Figure 4 where a lowess smoother is fitted to year with series as a factor to show the 
average trend. The residuals from the lowess fit are summarised in Figure 5. Pattern are evident, e.g. 
in jr_r4 where the recent residuals are all positive which could be due to an increase in catchability 
or a change in the distribution of the stock. Figures 6 and 7 repeat the analysis for  each scenarios. 
aSimilar patterns are seen across the long line indices across the scenarios, however Figures 3 & 4 
show that there is no particular trend in the purse seine index. While Figure 5 shows strong patterns 
and auto-correlation in the residuals from the loess fit to the indices. 
 
Correlations between the stocks are shown in Figure 8, in the form of pairwise scatter plots. The 
estimates of SSB and biomass from the 2018 SS base case are included for comparison. The purse 
seine index shows poor correlation with the long line indices and the SS3 estimates (<0.24), while 
the correlations between the long line indices are greater than 0.5 and most are greater than 0.8, There 
are therefore no obvious data conflicts between the long line indices that  require alternative data 
weightings to be explored for these indiecs.That the long line indices are positively correlated with 
the SS estimates of stock abundance, suggests that the biomass dynamic model inputs are consistent 
with the integrated assessment, and that there are no age or spatial effects that would require a more 
complicated structure than that assumed in the biomass dynamic model implementation. 
 
The cross correlations between the base Case indices are plotted in Figure 9 to identify potential 
lags due to year-class effects and differences in spatial distributions at age. The absence of lags for 
the long line indices confirms the conclusions with respect to the appropriate use of a biomass 
dynamic without regional structure.  The  lags in the case of the purse seine  indices indicates that  
the index does not represent the same components of the stock as the long line index. Due to the 
conflict between the purse seine and long line indices two scenarios were developed namely; i) the 
base case, where all indices were included; and ii) a scenario where only the purse seine index was 
fitted.  
 
Discards (numbers) are summarised in Figure 10 by region from the Taiwanese commercial logbook 
based on scenario (2) which excluded vessels that did not report any discards (IOTC, 2019b). 
 



Reference Case 

The two reference cases (where the biomass model is fitted to the SS estimates of SSB and biomass) 
are summarised in Figures 11, 12 and 13. Figure 11 summarises the trends of catch, SSB and harvest 
rate; Figure 12 presents phase plots with production functions; and Figure 13 presents the time series 
of process error where blocks correspond to regimes, estimated by the STARS (Sequential T-test 
Analysis of Regime Shifts) method, known also as the Rodionov test (Rodionov 2004). 
 
Indicators suggest that the stock is overfished  and experiencing overfishing if fitted to SSB but not 
if fitted to biomass estimated by SS3 (Figure 12).  The variability in process error is greatest when 
fitted to biomass (Figure 13).  



Model Fitting Diagnostics 

First the model fits are reviewed by examination of the model residuals using run plots (Figures 14 
and 15) and regime plots (Figures 16 and 17) for model and prediction residuals.  
 
The runs tests  (Figure 14) indicate that the model fits are poor in most cases other than region 3 
vessel effects as the residual patterns are systematically under or overpredicting. Figure 15 for the 
prediction residuals shows  similar patterns. When the purse seine index is included in the assessment 
scenarios adds no information, therefore and that there are conflicts with the long line index, therefore 
the hindcast was not run for the scenarios that include the purse seine index.  The prediction residuals 
indicate that regime shifts are probably occurring around 1990, corresponding to large scale global 
changes e.g. the strong ENSO event of 1990-1991 that effected the Indian Ocean (Francis Marsac, 
IFREMER, Sete, Pers. Com).   
 
 
 
Both model and prediction residuals using the STARS algorithm determines that there are 3 
states/regimes that can be indicated by both the model residuals (Figure 16) and prediction residuals 
(Figure 17). Prior to 1990’s, through the 1990’s and early 2000’s to recent years. The patterns vary 
by region, but in most cases are shown to be stable in regions 1 and 3, increasing positive pattern in 
region 2, and have a stronger negative pattern in region 4, perhaps suggesting a shift in distribution 
in those 2 regions from one to the other (see Figure on Regional distribution). 
  
Note that assessment areas are only 4, where CPUE’s from Area 2 represent Area 1 (left panel) or 
Area 7 (Area 2) represent Area 1. Area 3 in the CPUE standardization is Area 2 in the Assessment, 
Area 4 in CPUE standardization is Area 3 in the Assessment and Area 5 in CPUE standardization is 
Area 4 in the Assessment.  
 
The implications of this is a probable change in distribution or q getting lower in region 2, and higher 
in region 4 for the assessments, implying that catchability is changing either due to fishing changes 
or environmental changes in 2 and 4. 
 

Assessment Results 

The phase plots with the production functions are presented in Figure 18, (for purse seine estimates 
of stock size and carrying capacity are large and so the production function is truncated in the panel) 
the trends in biomass in figure 19 and time series of current biomass and fishing mortality with 
respect to reference point is shown in Figure 20 and 21. Time series of process error with regimes in 
Figure 22.  
 
As there is little signal in the purse seine index the assessment assumes that the stock is large and is 
being mined, Figures 18 and 19. 
 
A retrospective with projection for SSB is presented in Figure 22. A plot showing all results 
examined on the phase is shown in Figure 24, with temporal trajectories with different regimes as a 
function of Kobe or Majuro based reference points are shown in Figure 25 and 26. 
 
Stock status and reference points are summarised in Table 1. 
 
We focus on Figures 19, 20 and 21 where temporal trends indicate a sever decline in overall 
abundance, and increase in fishing mortality. In all cases, F is greater than FMSY reference point 
(Figure 21) and in only 2 cases B is greater than the reference point BMSY when r, i.e. intrinsic 



productivity is greater than 1, and when we follow the Biomass trajectory from the last SS3 
assessment to force the model to behave similar to the synthesis trajectory. Regardless, of scenario 
all models show a decline in abundance in recent years with respect to initial estimates. The nature 
of the time series is similar for scenario 2 and 4, but differs quite substantially from scenario 3 and 5. 
Scenario 1 is also quite different from the other scenarios. 
 
Regime shifts appear to have occurred in all regions similar to those described above in the 
diagnostics. Howver, the splits are more apparent to be before the late 90’s, 90’s to 2008/2009 and 
from 2009 onwards with regard to the scenarios examined. In the diagnostics, above the regions where 
the model and prediction residuals varied by area where lagged in different blocks (prior to 90’s, till 
mid 2000’s and after that). The retrospective analysis indicates all Regions are fairly stable other than 
Region 4 in 2017 (Figure 23). Reference model is systematically overestimating results from the 
hindcast.  

Discussion 
 
Based on this examination using a Bayesian surplus production model with process error, the here 
we summarise the main points: 
 
With regard to the CPUE data inputs: 
 

• Plots of correlation and cross-correlation between indices showed no apparent structure due 
to age or spatial effects that could not be taken into account by the biomass dynamic 
assessment model used.  

• There is no systematic pattern across different regions and essentially all areas indicate a 
similar declining trend with or with size sorting issues. 

• Diagnostics with respect to CPUE series indicated that all indices were highly correlated, and 
that the indices were also positively correlated with the SS estimates of stock abundance, 
which suggests that the biomass dynamic model inputs are consistent with the integrated 
assessment.  The absence of lags supports the use of a biomass dynamic without regional 
structure.   

 
With regard to the Assessment the following could be concluded: 
 
• Model diagnostics indicate regime shifts for a majority of the regions and scenarios examined 

suggesting non-stationarity of the stock recruit dynamics. 
• For indices with more than seven observations the runs test was only passed for index jr_r3ves 

for scenarios cpueS3, cpueS4 and cpueS5. The other long indices showed systematic patterns, 
i.e. jr2 showed positive residuals in the recent period and jr_r4 negative residuals in the last 
two decades when all the series was included. This could suggest that an increase in 
catchability or highgrading. 

• Prediction residuals for jr_r4 and jr_r4ves were always negative and for jr_jr2 and jr_jr2ves 
positive. 

• Prediction skill was poor over three years for all scenarios other than cpueS3, scenario cpueS4 
had fitting problems, and prediction skill was poor over 10 years coinciding with a change in 
process error.   

• The only runs that are above BMSY are high sp and SS bio. all other runs F>FMSY and 
B<BMSY.  



Conclusions 
In all likelihood, the stock is currently being overfished and is likely experiencing overfishing. The 
methods developed here provide an objective methodology to assess model performance. Our results 
indicate that there are non-stationary dynamics that probably effect the distribution, catchability and 
stock recruit function. Regardless of data series examined, the weight of evidence suggests that the 
stock is experiencing overfishing and is likely overfished. 
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Tables 
 
Table 1. Stock status in 2018 and reference points (we should add the 2 cases of PS just for illustration). 
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Figure 1 Regional structure
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Figure 2 Catch per unit effort indices of abundance by fleet and scenario.
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Figure 3 Catch per unit effort indices of abundance from 1979 onwards by fleet and scenario.
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Figure 4 Time series of Base Case CPUE indices, continuous blue line is a lowess smother showing the
average trend by area (i.e. fitted to year with series as a factor).
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Figure 5 Residuals from the lowess fit to the Base Case.
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Figure 6 Time series of Base Case CPUE indices, continuous blue line is a lowess smother showing the average trend by area (i.e. fitted to year with
series as a factor).
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Figure 7 Residuals from the lowess fit to the Base Case.
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Figure 9 Cross correlations between Base Case indices, to identify potential lags due to year-class effects.
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Figure 14 Model Residuals, red background indicates unusually long runs or unusually few crossings.
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Figure 15 Prediction residuals.
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Figure 16 Regime shifts using STARs algorithm for model residuals.
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Figure 17 Regime shifts using STARs algorithm for prediction residuals.
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Figure 18 Phase plots.
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Figure 19 Trends in SSB.
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Figure 20 Trends in SSB/Bmsy.
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Figure 21 Trends in F/Fmsy$.
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Figure 22 Time series of process error with regimes.
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Figure 23 SSB estimates form retrospective analysis.
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Figure 24 Kobe Phase Plots.
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Figure 25 Kobe Phase Plots.
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Figure 26 Majuro Phase Plots.
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