Study on the effect of ghost fishing on uncountable fishery mortality of BSC in Surat Thani Province

Asst Prof.Dr. Sontaya Koolkalya, Prof.Dr. Tuantong Jutagate, Asst Prof.Dr. Amonsak Sawusdee, Mr.Surasak Sichum

Ghost fishing is a fishing gear that has been lost and lost control of the fishery where it is still able to catch fish, causing continued death by lost fishing gear from normal fishing (Way, 1976) because when fishing gear is lost Such an apparatus can continue to catch fish for a period until it loses its catch condition, which varies according to the type and material of the fishing gear. When a fishing gear is lost to nature, its catch is not only the target fish being caught but also other fish being caught and lost without exploitation. In addition, the ghost gear could damage the bottom water environment (Brown and Macfadyen, 2007), and affect vulnerable ecosystems such as seagrass ecosystems, coral ecosystems, etc. It may also affect rare marine species (protected marine species) such as whales, dolphins, turtles, and dugongs. Most modern fishing gear is often made up of durable materials that do not decompose in nature. When this fishing gear is lost to the sea, it tends to remain in the environment for a long time and can continue to catch fish for long periods of time and causing significant environmental and economic losses. As a result, the issue of uncountable fishery mortality due to various types of fishing gears has become an issue of fisheries scientists and scientific studies. In the past, Thailand's BSC fishery, the fishing gear includes crab trap and crab gill nets (Sonthaya et al., 2017), which have been lost. As can be seen from the BSC fishing, ghost fisheries in the crab trap are found at a high rate while the occurrence of ghost fisheries in crab gill nets was secondary (Putsa et al., 2016), this was one of the main concerns for the assessment of BSC improvement projects 2018 (Assessment Document for BSC Fisheries Improvement Project, 19-20 April 2018, Department of Fisheries, Bangkok). Therefore, the objectives of a study to assess ghost fishing mortality of fishing gear Crab trap and crab gill nets of BSC fishing in Surat Thani Province was to analyze the catching efficiency of crab trap and crab gill nets and the impact of crab trap and crab gill nets on aquatic resources in order to propose guidelines and measures for sustainable BSC fishery resources management.

Methodology

1. Study area

Conducting an experimental study and collecting data in Surat Thani Province by selecting the experimental station (Quasi-experiment) at 3 stations, namely

- 1. Ban Hat Somboon, Tha Chana District,
- 2. Ban Takrob, Chaiya District, and
- 3. Nang Kam Beach, Don Sak District (Figure 1).

The experimental study area was the area where local fishermen of BSC fishing is operated.

Figure 1 shows the experimental and sampling station

2. Study process

In the present study, each station used crab trap and gill nets in the same way that fishermen used to fish. Each station will consist of 20 sets of crab traps (1 set consisting of 9 traps, size $36 \times 54 \times 19$ cm. Each trap will be tied with a rope, each 10 meters long) and crab gill nets (size 60×1.5 m.) of 20 pieces (Figure 2). The crab trap and the crab gill net will be placed approximately 1 kilometer apart. For the crab trap experiment will use the bait on the first day of experiment.

Figure 2 shows a set of crab traps and crab gill nets at each station.

Surveying and data collection at each station will collect traps and gill nets 1 set at a time (1 set of traps and 1 gill net) without returning to the sea. Trap and gill net are collected for the first month every 3 days, the second and third months are every 15 days, and the fourth and subsequent months are collected once a

month until it is ineffective for catching fish. In addition, SCUBA diving will be surveyed and recorded to help record images and assess the catching effectiveness of fishing gear.

3. Data Analysis

Data from the sample collection included catch composition, species classification and count, and the condition of each type of fishing gear.

4. Results

From the study of the effect of ghost fishing on uncountable fishery mortality during September 2021 to April 2022, catch results of fisheries at each station can be divided as follows:

Ban Hat Somboon Station

The samples were collected by 13 sets of 117 crab traps. A total of 124 individuals from 18 species of aquatic animal were entrapped by 13 sets. A total of 43 BSCs (34.68%) which was target species were trapped. While 81 individuals (65.2%) from 17 species of non-Target species were also trapped. Moreover, the Swimming Crab (*Charybdis anisodon*) was the most abundant species in non-Target species in this study. A total of 21 individuals (25.93%) were trapped (Table 1).

Table 1 shows the species and number of non-target species from crab traps fishery gear, Ban Hat Somboon fishing area.

Common name	Species name	Number	%
Screw turret	Turritella terebra	1	1.23
Melongena	Hemifusus sp.	1	1.23
Shouldered castor bean	Drupella margariticola	2	2.47
Blood Cockle	Tegillarca nodifera	8	9.88
Hermit crab	Clibanarius infraspinatus	3	3.70
Swimming crab	Charybdis feriata	1	1.23
Swimming crab	Charybdis affinis	6	7.41
Swimming crab	Charybdis anisodon	21	25.93
crab	Sphaerozius sp.	8	9.88
appendage of crab	Unidentified	1	1.23
Egg capsules of the cuttlefish	Unidentified	4	4.94
Striped eel catfish	Plotosus linneatus	4	4.94

Common name	Species name	Number	%
Orange-spotted grouper	Epinephelus coioides	4	4.94
Largescaled terapon	Terapon theraps	4	4.94
Jarbua terapon	Therapon jarbua	7	8.64
Spotted scat	Scatophagus argus	1	1.23
Streaked spinefoot	Siganus javus	5	6.17
Total		81	100.00

The Sample collection by gill nets, total of 13 pieces. A total of 151 individuals from 22 species of aquatic animal were caught by 13 pieces. A total of 84 BSCs (55.63%) which was target species were caught from gill nets. While 67 individuals (44.37%) from 21 species of non-Target species were also trapped. Moreover, the Spined murex Conchs (*Murex* sp.) and Rare spined murex (*Murex* trapa) were abundant species in non-Target species in this study which they were caught for 22 (32.84%) individuals and 20 (29.85%) individuals, respectively (Table 2).

Common name	Species name	Number	%
Screw turret	Turritella terebra	1	1.49
Spiral melongena	<i>Pugilina</i> sp.	1	1.49
Rock snail	Indothais sp.	1	1.49
Rare spined murex	Murex trapa	20	29.85
Spined murex	Murex sp.	22	32.84
Melongena	Hemifusus sp.	1	1.49
Blood Cockle	Tegillarca nodifera	1	1.49
Swimming crab	Charybdis anisodon	4	5.97
Swimming crab	Charybdis feriata	1	1.49
Spiny claw swimming crab	Thalamita spinimana	1	1.49
crab	Sphaerozius sp.	1	1.49
Peregrine crab	Varuna litterata	1	1.49
Mangrove stone crab	Myomenippe hardwickii	1	1.49
appendage of crab	Unidentified	1	1.49

Table 2 shows the species and number of non-target species from gill nets fishery gear, Ban Hat Somboon fishing area.

Common name	Species name	Number	%
Mantis shrimp	Oratosquilla nepa	2	2.99
Indo-Pacific horseshoe crab	Tachypleus gigas	3	4.48
Mangrove horseshoe crab	Carcinoscorpius rotundicauda	1	1.49
Octopus	Octopus sp.	1	1.49
Egg capsules of the cuttlefish	Unidentified	1	1.49
Veined catfish	Arius venosus	1	1.49
Shortfin lizardfish	Saurida micropectoralis	1	1.49
Total		67	100.00

Ban Ta Krob Station

The samples were collected by 13 sets of 117 crab traps. A total of 164 individuals from 18 species of aquatic animal were entrapped by 13 sets. A total of 32 BSCs (19.51%) which was target species were trapped. While 132 individuals (80.49%) from 17 species of non-Target species were also trapped. Moreover, the Swimming Crab (*Charybdis anisodon*) and Rabbitfishes (*Siganus canaliculatus*) were abundant species in non-Target species in this study which they were trapped for 54 (40.91%) individuals and 43 (32.58%) individuals, respectively (Table 3).

Table 3 shows the species and number of non-target species from crab traps fishery gear, Ban Ta Krob fishing area.

Common name	Species name	Number	%
Ternate false fusus	Brunneifusus ternatanus	1	0.76
Rare spined murex	Murex trapa	1	0.76
Short necked clam	Paphia undulata	5	3.79
Blood Cockle	Tegillarca nodifera	1	0.76
Swimming crab	Charybdis anisodon	54	40.91
Octopus	Octopus sp.	1	0.76
Cuttlefish	<i>Sepia</i> sp.	1	0.76
Egg capsules of the cuttlefish	Unidentified	1	0.76
Gray eel-catfish	Plotosus canius	2	1.52
Orange-spotted grouper	Epinephelus coioides	5	3.79
Sixbar grouper	Epinephelus sexfasciatus	2	1.52

Common name	Species name	Number	%
Largescaled terapon	Terapon theraps	3	2.27
Jarbua terapon	Therapon jarbua	5	3.79
Broadbanded cardinalfish	Ostorhinchus fasciatus	3	2.27
Streaked spinefoot	Siganus javus	3	2.27
White-spotted spinefoot	Siganus canaliculatus	43	32.58
Pig faced leather jacket	Paramonacanthus choirocephalus	1	0.76
Total		132	100.00

The Sample collection by gill nets, total of 13 pieces. A total of 191 individuals from 22 species of aquatic animal were caught by 13 pieces. A total of 140 BSCs (73.30%) which was target species were caught from gill nets. While 51 individuals (26.70%) from 21 species of non-Target species were also trapped. Moreover, the Spiral melongena (*Brunneifusus ternatanus*) was the most abundant species in non-Target species in this study. A total of 12 individuals (23.53%) were trapped (Table 4).

Table 4 shows the species and number of non-target species from gill nets fishery gear, Ban Ta Krob fishing area.

Common name	Species name	Number	%
Ternate false fusus	Brunneifusus ternatanus	12	23.53
Dog conch	Laevistrombus canarium	1	1.96
Common frog shell	Bufonaria rana	1	1.96
Rare spined murex	Murex trapa	4	7.84
Blood Cockle	Tegillarca nodifera	1	1.96
Orange-striped hermit crab	Clibanarius infraspinatus	3	5.88
Swimming crab	Charybdis anisodon	1	1.96
Spider crab	Doclea armata	1	1.96
Sentinel crab	Macrophthalmus sp.	1	1.96
Spotted moon crab	Matuta victor	1	1.96
Mangrove stone crab	Myomenippe hardwickii	5	9.80
Peregrine crab	Varuna litterata	1	1.96
Mantis shrimp	Oratosquilla nepa	1	1.96

Common name	Species name	Number	%
Mangrove horseshoe crab	Carcinoscorpius rotundicauda	3	5.88
Starfish	Asteroidea	7	13.73
Bengal whipray	Himantura imbricata	1	1.96
Daggertooth pike conger	Muraenesox cinereus	1	1.96
Striped eel catfish	Plotosus linneatus	1	1.96
Bartail flathead	Platycephalus indicus	1	1.96
Macau sole	Cynoglossus trulla	2	3.92
White-spotted spinefoot	Siganus canaliculatus	2	3.92
Total		51	100.00

Hat Nang Kam Station

The samples were collected by 12 sets of 108 crab traps. A total of 123 individuals from 29 species of aquatic animal were entrapped by 12 sets. A total of 13 BSCs (10.57%) which was target species were trapped. While 110 individuals (89.43%) from 28 species of non-Target species were also trapped. Moreover, the Swimming Crab (*Charybdis anisodon*) and Sea Urchins (*Temnopleurus toreumaticus*) were abundant species in non-Target species in this study which they were trapped for 25 (22.73%) individuals and 13 (11.82%) individuals, respectively (Table 5).

Table 5 shows the species and number of non-target species from crab traps fishery gear, Hat Nang Kam fishing area.

Common name	Species name	Number	%
Sea anemone	Unidentified	7	6.36
Rock snail	Indothais sp.	2	1.82
Spiral melongena	<i>Pugilina</i> sp.	1	0.91
Spined murex	Murex sp.	3	2.73
White Phos	Nassaria pusilla	1	0.91
Fawn Sand Snail	Natica vitellus	1	0.91
Orange-striped hermit crab	Clibanarius infraspinatus	4	3.64
Hermit crab	Diogenes sp.	1	0.91
Swimming crab	Charybdis affinis	25	22.73
Swimming crab	Charybdis feriata	2	1.82

Common name	Species name	Number	%
Spider crab	Doclea armata	4	3.64
Mangrove stone crab	Myomenippe hardwickii	2	1.82
Green Tiger Prawn	Penaeus semisulcatus	1	0.91
Egg capsules of the cuttlefish	Unidentified	6	5.45
Sea uchin	Temnopleurus toreumaticus	13	11.82
Brittle star	Ophiocnemis sp.	10	9.09
Ball sea cucumbers	Phyllophorella kohkutiensis	2	1.82
Sea cucumber	Mensamaria sp.	5	4.55
Sea cucumber	Cucumariidae	1	0.91
-	Unidentified	4	3.64
Striped eel catfish	Plotosus linneatus	1	0.91
Threespine Frogfish	Batrachomoeus trispinosus	2	1.82
Orange-spotted grouper	Epinephelus coioides	1	0.91
Sixbar grouper	Epinephelus sexfasciatus	2	1.82
Broadbanded cardinalfish	Ostorhinchus fasciatus	4	3.64
Tropical sand goby	Acentrogobius caninus	3	2.73
White-spotted spinefoot	Siganus canaliculatus	1	0.91
Pufferfishes	Chelonodon sp.	1	0.91
Total		110	100.00

The Sample collection by gill nets, total of 12 pieces. A total of 222 individuals from 31 species of aquatic animal were caught by 12 pieces. A total of 28 BSCs (12.61%) which was target species were caught from gill nets. While 194 individuals (87.39%) from 30 species of non-Target species were also trapped. Moreover, the Spined murex Conchs (*Murex* sp.) and Rare spined murex (*Murex* trapa) were abundant species in non-Target species in this study which they were caught for 87 (44.85%) individuals and 30 (15.46%) individuals, respectively (Table 6).

Table 6 shows the species and number of non-target species from gill nets fishery gear, Hat Nang Kam fishing area.

Common name	Species name	Number	%
Sea anemone	Sea anemone	10	5.15

Common name	Species name	Number	%
Rock snail	Indothais sp.	2	1.03
Spiral melongena	<i>Pugilina</i> sp.	1	0.52
Melongena	Hemifusus sp.	1	0.52
Rare spined murex	Murex trapa	30	15.46
Spined murex	Murex sp.	87	44.85
Noble volute	Cymbiola nobilis	2	1.03
Orange-striped hermit crab	Clibanarius infraspinatus	2	1.03
Hermit crab	Diogenes sp.	3	1.55
Swimming crab	Charybdis affinis	7	3.61
Swimming crab	Charybdis anisodon	1	0.52
Spiny claw swimming crab	Thalamita spinimana	1	0.52
Spider crab	Doclea armata	3	1.55
Mangrove stone crab	Myomenippe hardwickii	3	1.55
Mud crab	<i>Scylla</i> sp.	1	0.52
Mantis shrimp	Oratosquilla nepa	1	0.52
Mantis shrimp	Oratosquillina interrupta	1	0.52
Egg capsules of the cuttlefish	Unidentified	8	4.12
Indo-Pacific horseshoe crab	Tachypleus gigas	3	1.55
Sea uchin	Temnopleurus toreumaticus	2	1.03
Brittle star	Ophiocnemis sp.	3	1.55
Ball sea cucumbers	Phyllophorella kohkutiensis	6	3.09
Thorny sea cucumber	Colochirus quadrangularis	1	0.52
Sea cucumber	Mensamaria sp.	5	2.58
-	Unidentified	2	1.03
Sagor catfish	Hexanematichthys sagor	3	1.55
Sixbar grouper	Epinephelus sexfasciatus	2	1.03
Tigertooth croaker	Otolithes ruber	1	0.52
Largescaled terapon	Terapon theraps	1	0.52
White-spotted spinefoot	Siganus canaliculatus	1	0.52

Common name	Species name	Number	%
Total		194	100.00

From collecting samples and surveying crab traps and crab gill nets at all 3 stations, <u>it was not</u> found that both types of fishing gear were attached to aquatic animals; Endangered, Threatened and Protected Species (ETP Species). As well as from asking fishermen who fish nearby, it was not found that any fishing gear was slip through or lost to attached rare aquatic animals or protected marine animals such as Sea Turtle, Dolphin, dugon and Sea Horse.

From the analysis of the catch efficiency of Crab Traps, it was found that crab traps were effective in catching aquatic animals during the first month and will reduce the fishing efficiency in the 2nd month with the eyes of the crab trap's nets began to break and creatures began to cling the traps such as seaweed, barnacles and there is sediment on the crab trap's nets. In the 3rd month, the crab traps begin to sink in the sediment, some traps are folded that they can't catch any fish, there is a large amount of sediment covering the nets, there are any seaweed and barnacles growing around the rope. As well as the catches of the species and numbers of fish began to stabilize, indicating that the trap fishing gear had begun to lose its effectiveness in the 3rd month. In addition, the fishing area is characterized by the seafloor with a large percentage of sediment. Causing the trap lay on the sea floor and sediment caught at the netting area, preventing aquatic animals from entering, as shown in Figure 3.

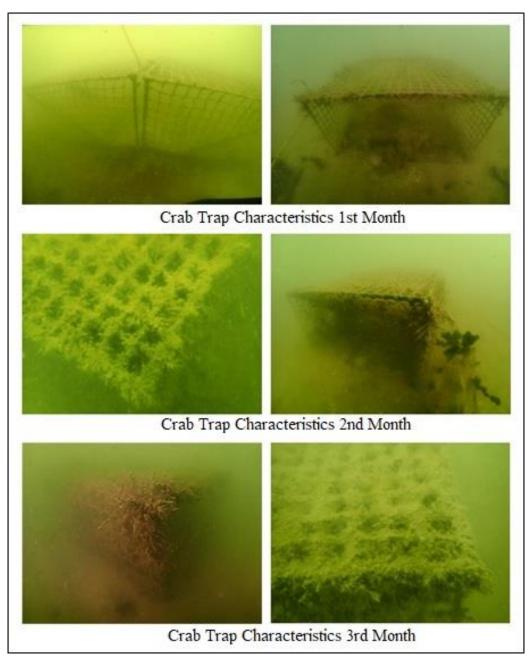


Figure 3 shows characteristics of crab traps in each month.

Moreover, from the analysis of fish catch efficiency with Crab Gill Nets, it was found that crab gill nets are effective in catching aquatic animals during the 1-2 months. By the 2nd month, the net will begin to break and have a coil, there is some seaweed on the buoy area which reduces the efficiency of catching fish. In the 3rd month, the nets have a coiled shape and began to sink to the sea floor, there are a lot of seaweed and barnacles on the buoys which aquatic species are still caught or attach in semi-floating, semi-sunk nets, so there should be further follow-up. Figure4



Figure 4 shows characteristics of crab gill nets in each month.

Due to the monsoon season, the experimental fishing gear was moved by the wind and loss and after the end of the monsoon, the wind and waves began to calm, the researchers surveyed and collected samples by scuba diving with surveying the vicinity in the experimental area. It was found some crab trap and gill nets from the experimental that drifted about 500-1000 meters away and sank onto the sand as well as some were blown away which was assumed to be lost by sediments on the sea floor. Moreover, from scuba diving to explore nearby vulnerable areas such as seagrass and coral reefs, the fishing gear from the experimental was not found in that area.

Reference

- Brown, J. and G. Macfadyen (2007). Ghost fishing in European waters: Impacts and management responses. Marine Policy 31(4), 488-504. DOI: 10.1016/j.marpol.2006.10.007.
- Putsa, S., A. Boutson and S. Tunkijjanukij. 2016. Comparison of ghost fishing impacts on collapsible crab trap between conventional and escape vents trap in Si Racha Bay, Chon Buri province. Agriculture and Natural Resources 50: 25-132.
- S. Koolkalya, U. Matchakuea, T. Jutagate (2017). Catch Status and Trend Analysis of Brachyuran Fisheries in the Gulf of Thailand. Vol 22, No 1 (2017): Burapha Science Journal Volume 22.
- Way E. W. (1976) Lost gillnet (ghost net) retrieval project, 1976, Environment Canada, Fisheries and Marine Service, Industrial Development Branch, St. Johns, Newfoundland.