

PUKFI Northern Scallops

William Lart 14/06/2019

ECODREDGE; European project 1999-2003

Evaluation and improvement of shellfish dredge design and fishing effort in relation to technical conservation measures and environmental impact:

- 9 partners, 5 nations
- Scallop and clam dredging

Ecodredge project Objectives

- Develop novel techniques to measure physical parameters at the dredge-seabed interface. Utilise under a range of conditions
- Develop the means to assess physiological stress in the target organism and determine how this affects survival
- Assess the ecological effects of experimental dredging on benthic communities
- Quantify the role of dredge components in the size and species selectivity of dredges.
- Test innovations in dredge design

Physical effects

Tooth penetration with time

10 minutes @ 10 Hz.

Time

Capture mechanism for king scallops; spring toothed dredge

From video observations;

Scallop discard survival

Discards in the scallop fishery

Minimum Legal Landing Size (MLLS):

 Irish Sea, Eastern English Channel = 110mm shell length

 Western English Channel, Scotland = 100mm shell length

What proportion of the catch is under the Minimum Legal Landing Size (MLLS)?

Damage of scallops; Manx fishery

- Damage to catch and bycatch was assessed on 8 fishing grounds over 3 years
- Potential explanatory variables were recorded, including rock volume, dredge fullness, three way acceleration.
- Finally the shell strength and structure of scallops from different grounds was measured

seafish Damage of scallops related to ground; annual survey observations 20 15 % damaged scallops 10 5 0 June 99 **Oct 99** June 98 **Oct 98** Bradda Inshore Laxey Bradda Offshore Peel **15 PSM** Chickens

Results

- Damage to both target and non target-species was highly variable, both temporally and spatially but little related to any of the explanatory variables measured
- Lethal damage to king scallops was consistently higher on some grounds than others
- Subsequent analysis of shell strength and structure explained much of the variation in scallop damage levels

Conclusions

- Variation in shell thickness, structure and strength of scallops' shells appeared to be the principle driver for variation in damage levels
- Majority of the damage occurred during initial impact with the **dredge teeth**
- Variation in shell strength was not related to factors such as growth rate, habitat type or water depth
- Possible contamination with heavy metals at the Laxey site

seafist

Scallop behaviour

- Experiments to examine the effect of simulated dredging on scallop behaviour
- Swimming defined as four adductions or more
- Scallops bolted to a rock in an experimental tank and stimulated with a starfish arm
- Responses monitored for 24 hours

Scallop escape responses

Swim response of scallops Distance travelled vis number of adductions

Responses

seafish

Adenylic Energetic Charge (AEC)

AEC = (ATP + 0.5ADP) / (ATP + ADP + AMP)

ATP = adenosine tri-phosphate - maximum energyADP = adenosine di-phosphate - intermediate energyAMP = adenosine mono-phosphate - no energy

- AEC = 0 -all nucleotides are AMP;
- AEC = 0.4 High stress
- AEC = 1 -all nucleotides are ATP; low stress

Stress on scallops

Scallops stressed by dredging but can recover; 6 hours

Behaviour in response to predators also altered up to 24 hours

Recovery of AEC after different stress levels

- Do predators aggregate to discarded material?
- What species are involved?
- What are the rates of aggregation?
- Does the level of damage in discards affect aggregation level and rate?
- How does the spatial distribution of discards affect predator aggregation?
- Do predators/scavenger populations benefit?

Position of underwater camera

Mean hourly abundance of *Cancer pagurus* for two replicate periods in each of the three damage treatments. Different predators different dynamics

Mortality of scallops

• Density of scavengers at dredged but undamaged bait was equivalent to the density during unabated periods.

sea

- For the damaged scallops there was a significant increase in invertebrate scavenger density over the study period of 96 hours.
- The badly damaged scallops were all eaten within just over 24 hours for each of the 2 replicate periods.
- The scallops that were lightly damaged survived longer, but survival rates differed among replicates.
 - Replicate 1 all scallops survived for 48 hours, and were eaten over the second half of the recorded
 - Replicate 2, half of all scallops were eaten after only 12 hours, but some survived for up to 48 hours
 - Replicate 2; the third baiting event (for which video records were incomplete) nearly half of all tethered scallops survived the full 96 hour period

Scallop dredge selectivity

Experiments to examine effect of ring size, tooth spacing on selectivity

Teeth selectivity

seafish

10 teeth/bar vis 8 teeth/bar

Length(mm)

New ring selectivity

Ring dimensions		Estimates of L ₅₀ , L ₂₅ & L ₇₅ (mm)					Selection factor	Maximum asymtotic efficiency			α		
Ring id	Wire od	L_{50}	SD	CV %	L_{25}	L ₇₅		Estimate	SD .	CV %	Estimate	SD	CV %
75	10	84.6	5.1	6	78	91	0.89	1.0	0.2	15	0.35	0.5	152
85	10	96.6	2.9	3	91	102	0.88	1.1	0.1	10	0.41	0.4	104
92	10	107.6	3.8	4	103	112	0.90	0.8	0.2	22	0.52	1.1	219
80	12	85.8	3.3	4	81	90	0.93	1.0	0.1	12	0.50	0.7	134
85	12	96.7	4.2	4	87	106	0.88	1.2	0.2	14	0.22	0.2	81
88	12	98.3	5.2	5	90	107	0.86	0.9	0.1	17	0.26	0.3	117

Relative strength of bellies (10mm wire 9 rings across) to a 75mm ring (10mm wire belly 10 rings across)

Ring internal diameter mm	Wire thickness	Relative Strength %
80	12	141
85	10	81
88	12	132
92	10	76

Wear on bellies is an issue for strength and selectivty

Worn

Effect of wear

seafish

30 days use

60 days use

Bycatch

seafish

Observations on dredge efficiency

ICES have it in the ToR of WG Scallop to assemble bycatch information

For further details contact:

William Lart Title

Phone 01472 252323 Email William.Lart@seafish.co.uk

seafish.org.uk

Thank you