Risk Based Framework (RBF) of the Blue Swimming Crab Fisheries in Pamekasan of East Java, Indonesia

2019

List of Contents

1	Intro	troduction 2			
	1.1	Description of the Blue Swimming Crab Fisheries	2		
	1.2	3			
	1.3	Methods	3		
	1.4	Scope of this RBF	9		
2	Reta	ined Species Assessment	9		
	2.1	Catch Composition	9		
	2.2	Consequence Analysis of the Blue Swimming Crab Stock	12		
	2.3	Productivity-Susceptibility Analysis (PSA)	13		
	2.4	Retained Species Risks	14		
3	Habi	tat Assessment	15		
	3.1	Habitat Consequence Analysis	15		
	3.2	Habitat Risk	15		
4	Retained Species and Habitat Assessment MSC Score				
5	Ecosystem Assessment				
6	General Evaluation				
7	Conclusion and recommendation				
Re	feren	ces	36		

1 Introduction

1.2 Description of the Blue Swimming Crab Fisheries

Pamekasan, especially at southern part of Madura is one of the blue swimming crab (*Portunus pelagicus*) fisheries in East Java Province of Indonesia. In term of unit of area for fisheries management in Indonesia, the southern waters of Madura is part of Fisheries Management Area (FMA) or Wilayah Pengelolaan Perikanan (WPP) of the Republic of the Indonesia (WPP-RI) 712 (**Figure 1**). The contribution of FMA 712 to the national blue swimming crab wild catch production is approximately 40% (DGCF, 2017). Meanwhile, the blue swimming crab of southern Pamekasan might contribute less than 10% of the BSC wild catch production in FMA 712. It is a relatively minor area for BSC production of FMA 712, in which only subset of Indonesian Blue Swimming Crab Association or Asosiasi Pengelolaan Rajungan (APRI) members are active.

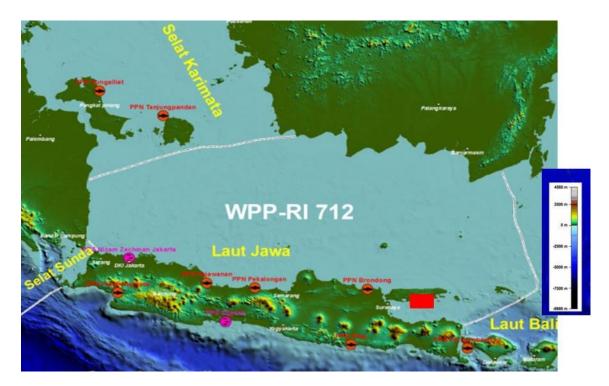


Figure 1. Southern Pamekasan of Southern Madura Waters (red block colour) as part of Fisheries Management Area (FMA or WPP-RI 712) of the Republic of the Indonesia (white line as the boundary of FMA).

The blue swimming crab (BSC) fishery in southern Pamekasan is captured by coastal small-scale fisher using less than 10 gross tonnage (GT) boats with an average of 2 GT boats and 10-23 HP motor. All fisher live in castal villages of southern Pamekasan and they have using traps (collapsible or folding traps) for fishing BSC as well as most of fisher of southern Madura, i.e. Southern Bangkalan, Sampang, Pamekasan and Sumenep (Wijayanti *et al.*, 2018). The fishing ground of the BSC fisher approximately

less than 6-7 NM from the shore line with the water depth less than 20 m (**Figure 2**). Fishing occur as one day fishing or it just several hours during day time or night and almost round years.

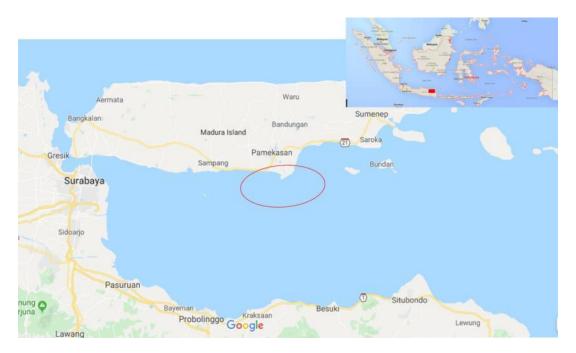


Figure 2. The BSC Fishing Ground in Southern Pamekasan of Southern Madura Waters.

1.2 Risk Based Framework (RBF) Assessment

This Risk-Based Framework (RBF) was developed based on Marine Stewardship Council (MSC) Fisheries Process in order to assess the fishery which has data deficient for certification program against the MSC standard for sustainable fishing. The RBF may be used for evaluating the BSC stock status, and the impact of the fisheries on primary species, secondary species, ETP species, habitat and ecosystem components of MSC standard Principle 2.

1.3 Methods

1.3.1 Data collection

Apart of data collection for Length Base Stock Assessment, APRI was collecting data for non-target species of the BSC fishing using traps in southern Pamekasan from November 3rd, 2018 until November 28th, 2019. Data collection was conducted during seven to 11 days per-month from November 3rd, 2018 until July 30th, 2019, while from August 1st to November 28th, 2019 was conducted every day. Other information was collected during during site visit and RBF workshop at Santika Primere Gubeng Hotel

Surabaya on July 10th, 2019. Participant in the workshop consist of BSC stakeholder in Madura, including: (1) the representative researcher of Brawijaya University-Malang and Trunojoyo Uniersity-Bangkalan Madura; (2) the representative of APRI member from East Java; (3) the representative of Fisheries and Marine Affair Agency of Bangkalan, Sampang, Pamekasan and Sumenap, (4) the representative of some mini plant manager from Pamekasan; (5) the representative of BSC fisher from Pamekasan.

1.3.2 RBF Methodology

The BSC fisheries of Pamekasan-Madura can classified as data deficient. Methodology within the RBF on the fishery and justification shown in **Figure 3** and **Figure 4**.

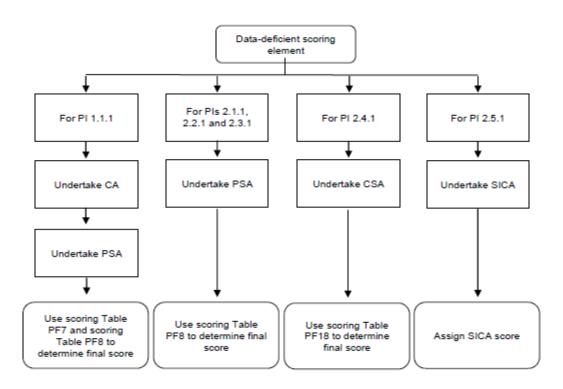
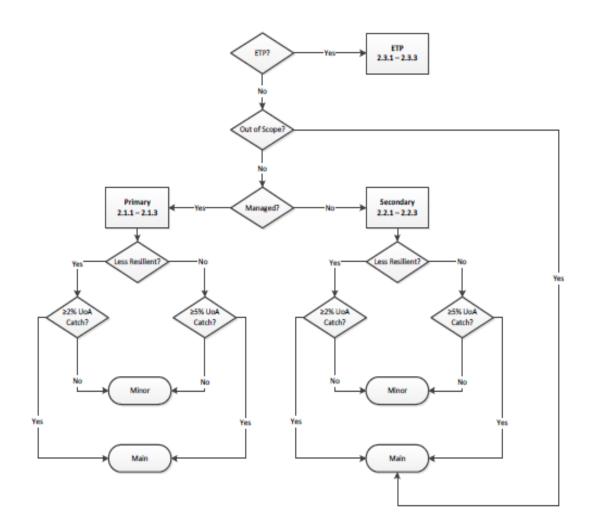



Figure 3. Methodology within the RBF. Note: CA is Consequence Analysis; PSA is Productivity Susceptibility Analysis; CSA is Consequence Spatial Analysis; SICA is Scale Intensity Consequence Analysis (Source: Figure PF1 of MSC Fisheries Certification Process v2.1, p.69)

a. Consequence Analysis (CA)

The Consequence Analysis (CA) is a semi-quantitative analysis that assesses the consequence of fishing activity on a particular species subcomponent. The CA is partly based on the structured collection of qualitative information from a diverse group of stakeholders, as well as using information on proxies that can be used to estimate changes to the relevant subcomponent in a fishery. The CA scoring template can be seen in **Table 1**.

Figure 4. Decision tree to assisst in designation of P2 Species components (Source: Figure GSA4 of MSC Fisheries Standard [Annexes S] and Guidance v2.0, p.418)

Table 1. The Consequence Analysis (CA) Scoring Template

Principle 1: Stock status outcome	Scoring element	Consequence subcomponents	Consequence score
		Population size	
		Reproductive	
		capacity	
		Age/size/sex	
		structure	
		Geographic range	
Rationale for most vulnerable subcomponent			
Rationale for			
consequence score			

Source: Table PF2 of MSC Fisheries Certification Process v2.1, p.74

b. Productivity Susceptibility Analysis (PSA)

The Productivity Susceptibility Analysis (PSA) requires information about the productivity and susceptibility of each species in a given PI, and uses this information to individually score a set of attributes using pre-established PSA tables. Any attribute for which there is insufficient data is automatically assigned the highest risk score: at least some of information is thus needed to demonstrate low risk in the fishery. The Productivity Susceptibility Analysis attributes and score can be seen in **Table 2** and **Table 3**.

Productivity determinant	High productivity (Low risk, score=1)	Medium productivity (medium risk, score=2)	Low productivity (high risk, score=3)
Average age at maturity	<5 years	5-15 years	>15 years
Average maximum age	<10 years	10-25 years	>25 years
Fecundity	>20,000 eggs per year	100-20,000 eggs per year	<100 eggs per year
Average maximum size (not to be used when scoring invertebrate species)	<100 cm	100-300 cm	>300 cm
Average size at maturity (not to be used when scoring invertebrate species)	<40 cm	40-200 cm	>200 cm
Reproductive strategy	Broadcast spawner	Demersal egg layer	Live bearer
Trophic Level	<2.75	2.75-3.25	>3.25
Density dependence (to be used when scoring invertebrate only)	Compensatory dynamics at low population size demonstrated or likely	No depensatory or compensatory dynamics at low population size demonstrated or likely	Depensatory dynamics at low population size (Allee effect) demonstrated or likely

Table 2. The PSA-Productivity Attributes and Scores

Source: Table PF4 of MSC Fisheries Certification Process V 2.1, p. 77-78.

Susceptibility attribute	High productivity (Low risk, score = 1)	Medium productivity (medium risk, score = 2)	Low productivity (high risk, score = 3)
Areal Overlap (Availability) Overlap of the fishing effort with a species concentration of the stock.	<10% overlap	10-30% overlap	>30% overlap

Susceptibility attribute		High productivity ow risk, score = 1)	Me	edium productivity (medium risk, score = 2)		_ow productivity gh risk, score = 3)
Vertical Overlap			Medium overlap			High overlap with
(Encounterability)		fishing gear		with fishing gear		fishing gear
The position of the		00		00		00
stock/species within						
the water column						
relative to the fishing						
gear, and the position						
of the stock/species						
within the habitat						
relative to the fishing						
gear.	_		-		_	
Selectivity of gear	а.	Individual <size at<="" td=""><td>a.</td><td>Individual <size at<="" td=""><td>а.</td><td>Individual <size at<="" td=""></size></td></size></td></size>	a.	Individual <size at<="" td=""><td>а.</td><td>Individual <size at<="" td=""></size></td></size>	а.	Individual <size at<="" td=""></size>
types		maturity are rarely		maturity are		maturity are
Potential of gear to	h	caught Individual <size< td=""><td>h</td><td>regularly caught</td><td>h</td><td>frequently caught</td></size<>	h	regularly caught	h	frequently caught
capture or retain the species	b.		b.	the size at	b.	the size at
species		at maturity can escape or avoid		maturity can		maturity are
		gear		escape or avoid		retained by
		year		gear		gear
Post-capture	F	vidence of majority	1	Evidence of some	R	etained species or
mortality (PCM)		leased post-capture	-	eased post-capture		ajority dead when
The change that, if		and survival	,	and survival		released
captured, a species						
would be released and						Default scorefor
that it would be in a						retained species
condition permitting						(Principle 1 or
subsequent survival						Principle 2).

Source: Table PF5 of MSC Fisheries Certification Process V2.1, p.78-79.

c. Habitat Assessment by Consequence Spatial Analysis (CSA)

The Consequence Spatial Analysis (CSA) requires information about the consequence of fishing activities and spatial distribution of habitat types and uses this information to individually score a set of attributes using pre-established CSA tables. Any attribute for which there are insufficient data is automatically assigned the highest risk score: at least some level of information is needed to demonstrate low risk in the fishery.

Habitats in the UoA shall be categorised on the basis of their substratum, geomorphology, and (characteristic) biota (SGB) characteristics, followed by the biome, sub-biome, and its feature (Table PF10 of MSC Fisheries Certification Process v2.1, p.86). Meanwhile, the score of consequence attributes such as in Table PF11 of MSC Fisheries Certification Process (FCP) v2.1, p.86.

The attribute of regeneration biota shall be also scored on the basis of the rate of the recovery of biota associated with the habitat using information on age, growth, and recolonisation of biota where available (Table PF12 of MSC FCP v2.1, p.87). Where information on age, growth, and recolonisation of associated biota is not available for the UoA, reference shall be made to comparable data from studies elsewhere. In the absence of such comparable studies, the proxies in Table PF12 shall be used as a

surrogate for accumulation and recovery time. Meanwhile, the natural disturbance attribute shall be scored on the basis of the natural disturbance that is assumed to occur at the particular depth zone in which the habitat and fishing activity occurs (Table PF13 of MSC FCP v2.1, p.88). Where information on disturbance is unavailable, proxies shall be used as outlined in Table PF13.

Removability of biota shall be also scored on the basis of the likelihood of attached biota being removed or killed by interactions with fishing gear (Table PF14 of MSC FCP v2.1, p.89). This attribute shall also consider the removability and mortality of structure-forming epibiota and bioturbating infauna. On the other hand, removability of substratum shall be scored on the basis of clast (rock fragment or grain resulting from the breakdown of larger rocks) size and likelihood of the substratum being moved (Table PF14). Scoring of this attribute shall consider the gear type being assessed.

Substratum ruggedness shall be scored on the basis of the extent to which available habitat is actually accessible to mobile gear given the ruggedness of the substratum (Table PF15 of MSC FCP v2.1, p.92).. Scoring of this attribute shall consider the characteristics of the substratum and the gear type being used. Subsequently, seabed slope shall be scored on the basis of the impact to habitat that occurs as a result of slope steepness and mobility of substrata once dislodged. Scoring this attribute shall consider the degree of slope (Table PF15).

Gear footprint is also shall be scored on the basis of the gear's potential for disturbance and the number of encounters required to produce an impact on a habitat, taking into account the size, weight, and mobility of individual gears and the footprint of the gears (Table PF16 of MSC FCP v2.1, p.93). This attribute is followed by Spatial overlap attribute that shall be scored on the basis of spatial overlap between the habitat(s) distribution within the "managed area" and the distribution of areas fished by the UoA (Table PF17 of MSC FCP v2.1, p.94). Moreover, encounterability shall be scored on the basis of the likelihood that a fishing gear will encounter the habitat within the "managed area", taking into account the nature and deployment of the fishing gear and the possibility of its interaction with the habitat (Table PF 17).

d. Ecosystem Assessment by Scale Intensity Consequence Analysis (SICA)

The Scale Intensity Consequence Analysis (SICA) is a qualitative analysis which aims to identify which activities lead to a significant impact on any ecosystem. A SICA is partly based on the structured collection of qualitative information pertaining to the PI in question from a diverse group of stakeholders. In this this assessment, SICA will not conducted.

1.4 Scope of this RBF

This RBF was conducted in the scope of Risk-based assessment and to provide:

- Principle 1, particularly performance indicator (PI) 1.1.1 of the blue swimming crab stocks of the Pamekasan Blue Swimmer Crab Fishery by using the available data;
- Principle 2, particularly PI 2.1.1, PI 2.2.1, PI 2.3.1, PI 2.4.1, PI 2.5.1, using available data;
- Advice on the quality and limitations of each RBF assessment;
- Advice on improvements to the harvest strategy in highlight of the P1 RBF assessment;
- Provides an understanding of the implications of recent changes in the MSC assessment framework from Version 2.1 (which would need to be used in future certification).

2 Retained Species Assessment

2.1 Catch Composition

APRI was implemented an observer programme to assess catches of BSC as target species and other by-catches species in Southern Pamekasan since at the beginning of November 2018. The data was the BSC catches per-unit of effort (CPUE) of fishery, length and weight of BSC samples. Meanwhile, all by-catches or non-targeted species for both retained and discarded species were observed and identified by number of individual or species group and their weight.

Result showed that the proportion of non-target species by weight for BSC traps fisheries was less than 20%, while retained species (R) approximately 16% (**Table 4** and **Table 5**). Therefore, the proportion of discarded species (D) was low (less than 4%). Different number of species and amount of by-catches can be found in small to medium scale of different habitat related to biodiversity in certain area and season in BSC fisheries (Zairion 2015; Sari *et al.*, 2019). Zairion (2015) also reported that mean percentage of non-targeted species caught by gill-net in BSC fisheries at the East Lampung coastal waters was 38% and 68% by weight and the number of individual in the year, respectively. The highest proportion of by-catch was during east monsoon/dry season and it seems has connectivity with wind driven current.

Result showed that ETP species was found in very low proportion and its status as retained species (R). This ETP species is Indo-Pacific (Coastal) horseshoe crab (*Tachypleus gigas*). Meanwhile, result also showed that there was one retained species who has the proportion above 5%, that is Giant mud crab/Giant mangrove crab (*Scylla serrate*). This species is managed under the Ministry of Fisheries and Marine Affair Decree No. 56 year 2016 concerning Prohibition of catching and / or exporting of lobster (*Panulirus* spp.), crab (*Scylla* spp.), and blue swimming crab (*Portunus* spp.) from country region of the Republic of Indonesia. Thus, the *Scylla serrate* can categorized as **primary species**.

	y Number of Ind.	Status
1Porturus pelagicusBlue swimmer crabCrustacea80.62II. Non-targeted-1Tachypleus gigas')Indo-Pacific (Coastal) horseshoe crabXiphosuran0.592Johnius amblycephalusBearded croakerFish0.433Plotosus caniusGray eel-catfishFish0.334Halopryne diemensis?Fish0.045Epinephelus sexfasciatusSixbar grouperFish0.746Terapon therapsLargescaled teraponFish0.997Cynoglossus linguaLong tongue soleFish0.068Brevitrygon (Himantura) walgaScaly whiprayFish0.349Arius sp.Sea catfishFish0.0710Scatophagus argusSpotted scatFish0.0411Nemipterus hexodonOrnate threadfin breamFish0.0412Leiognathus sp.PonyfishFish0.3714Scylla serrataIndo-Pacific swamp crab/ Giant mud crab; Giant 		
I. Non-targeted-1Tachypleus gigas')Indo-Pacific (Coastal) horseshoe crabXiphosuran0.592Johnius amblycephalusBearded croakerFish0.433Plotosus caniusGray eel-catfishFish0.334Halopryne diemensis?Fish0.045Epinephelus sexfasciatusSixbar grouperFish0.746Terapon therapsLargescaled teraponFish0.997Cynoglossus linguaLong tongue soleFish0.068Brevitrygon (Himantura) walgaScaly whiprayFish0.349Arius sp.Sea catfishFish0.0710Scatophagus argusSpotted scatFish0.0411Nemipterus hexodonOrnate threadfin breamFish0.0412Leiognathus sp.PonyfishFish0.3714Scylla serrataGiant mud crab Giant mangrove crabCrustacean0.3215Harpiosquilla harpaxMantis shrimpsCrustacean0.2917Charybdis affinisSmoothshelled swimming crabCrustacean0.2918Charybdis natatorRidge swimming crabCrustacean0.2619Charybdis feriataCrustific rabCrustacean0.2619Charybdis feriataCrustific rabCrustacean0.2619Panaeus monodonGiant tiger prawnCrustacean0.0413Jarpeus finalisFish crustacean0		
1Tachypleus gigas')Indo-Pacific (Coastal) horseshoe crabXiphosuran0.592Johnius amblycephalusBearded croakerFish0.433Plotosus caniusGray eel-catfishFish0.334Halopryne diemensis?Fish0.045Epinephelus sexfasciatusSixbar grouperFish0.746Terapon therapsLargescaled teraponFish0.997Cynoglossus linguaLong tongue soleFish0.068Brevitrygon (Himantura) walgaScaly whiprayFish0.349Arius sp.Sea catfishFish0.0710Scatophagus argusSpotted scatFish0.0411Nemipterus hexodonOrnate threadfin breamFish0.0412Leiognathus sp.PonyfishFish0.3714Scylla serrataMantis shrimpsCrustacean0.3215Harpiosquilla harpaxMantis shrimpsCrustacean0.2917Charybdis affinisSmoothshelled swimming crabCrustacean0.2918Charybdis natatorRidge swimming crabCrustacean0.2619Charybdis feriataCrucifix crabCrustacean0.2619Panaeus monodonGiant tiger prawnCrustacean0.0420Indo-Patific symmenCrustacean0.2621Panaeus monodonFiabeal lobsterCrustacean0.2622Thenus orientalisFiabeal lo	93.80	R
1Fach yperes gigs / horseshoe crabApproximation0.392Johnius amblycephalusBearded croakerFish0.433Plotosus caniusGray eel-catfishFish0.334Halopryne diemensis?Fish0.045Epinephelus sexfasciatusSixbar grouperFish0.746Terapon therapsLargescaled teraponFish0.997Cynoglossus linguaLong tongue soleFish0.068Brevitrygon (Himantura) walgaScaly whiprayFish0.349Arius sp.Sea catfishFish0.0110Scatophagus argusSpotted scatFish0.0411Nemipterus hexodonOrnate threadfin breamFish0.0412Leiognathus sp.PonyfishFish0.3714Scylla serrataGiant mud crab; Giant mangrove crabCrustacean0.3215Harpiosquilla harpaxMantis shrimpsCrustacean0.2917Charybdis luciferaYelloish brown crabCrustacean0.0618Charybdis natatorRidged swimming crab Twospined arm swimming crabCrustacean0.2620Charybdis leriataCrucifix crabCrustacean0.2621Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	-	
3Plotosus caniusGray eel-catfishFish0.334Halopryne diemensis?Fish0.045Epinephelus sexfasciatusSixbar grouperFish0.746Terapon therapsLargescaled teraponFish0.997Cynoglossus linguaLong tongue soleFish0.068Brevitrygon (Himantura) walgaScaly whiprayFish0.349Arius sp.Sea catfishFish0.0710Scatophagus argusSpotted scatFish0.0111Nemipterus hexodonOrnate threadfin breamFish0.0412Leiognathus sp.PonyfishFish0.3714Scylla serrataIndo-Pacific swamp crab/ Giant mud crab; Giant mangrove crabCrustacean0.3215Harpiosquilla harpaxMantis shrimpsCrustacean0.3216Charybdis luciferaYelloish brown crab CrustaceanCrustacean0.0618Charybdis anisodonTwospined arm swimming crabCrustacean0.2619Charybdis anisodonTruospined arm swimming crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean0.2621Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.04	ETP/R
4Halopryne diemensis?Fish0.045Epinephelus sexfasciatusSixbar grouperFish0.746Terapon therapsLargescaled teraponFish0.997Cynoglossus linguaLong tongue soleFish0.068Brevitrygon (Himantura) walgaScaly whiprayFish0.349Arius sp.Sea catfishFish0.0710Scatophagus argusSpotted scatFish0.0111Nemipterus hexodonOrnate threadfin breamFish0.0413Epinephelus coioidesOrange-spotted grouperFish0.3714Scylla serrataGiant mud crab; Giant mangrove crabCrustacean0.3215Harpiosquilla harpaxMantis shrimpsCrustacean0.2916Charybdis affinisRidged swimming crabCrustacean0.2619Charybdis natatorRidged swimming rab crustaceanCrustacean0.2619Charybdis feriataCrucifix crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean0.2621Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.15	R
5Epinephelus sexfasciatusSixbar grouperFish0.746Terapon therapsLargescaled teraponFish0.997Cynoglossus linguaLong tongue soleFish0.068Brevitrygon (Himantura) walgaScaly whiprayFish0.349Arius sp.Sea catfishFish0.0710Scatophagus argusSpotted scatFish0.0111Nemipterus hexodonOrnate threadfin breamFish0.8512Leiognathus sp.PonyfishFish0.3714Scylla serrataOrange-spotted grouper Giant mud crab; Giant mangrove crabCrustacean0.3215Harpiosquilla harpaxMantis shrimpsCrustacean0.2916Charybdis affinisSmoothshelled swimming crabCrustacean0.0619Charybdis aniatorRidged swimming crab crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean0.2621Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.04	R
6Terapon therapsLargescaled teraponFish0.997Cynoglossus linguaLong tongue soleFish0.068Brevitrygon (Himantura) walgaScaly whiprayFish0.349Arius sp.Sea catfishFish0.0710Scatophagus argusSpotted scatFish0.0111Nemipterus hexodonOrnate threadfin breamFish0.8512Leiognathus sp.PonyfishFish0.3713Epinephelus coioidesOrange-spotted grouperFish0.3714Scylla serrataGiant mud crab; Giant mangrove crabCrustacean0.3215Harpiosquilla harpaxMantis shrimpsCrustacean0.2917Charybdis luciferaYelloish brown crabCrustacean0.0618Charybdis natatorRidged swimming crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean0.2621Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.01	D
7Cynoglossus lingua Brevitrygon (Himantura) walgaLong tongue soleFish0.068Brevitrygon (Himantura) walgaScaly whiprayFish0.349Arius sp.Sea catfishFish0.0710Scatophagus argusSpotted scatFish0.0111Nemipterus hexodonOrnate threadfin breamFish0.8512Leiognathus sp.PonyfishFish0.0413Epinephelus coioidesOrange-spotted grouper Giant mud crab; Giant mangrove crabFish0.3714Scylla serrataIndo-Pacific swamp crab/ Giant mud crab; Giant crabCrustacean0.3215Harpiosquilla harpaxMantis shrimpsCrustacean0.2917Charybdis luciferaYelloish brown crab crabCrustacean0.0618Charybdis natatorRidged swimming crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean0.2621Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.39	R
Brevitrygon (Himantura) walgaScaly whiprayFish0.349Arius sp.Sea catfishFish0.0710Scatophagus argusSpotted scatFish0.0111Nemipterus hexodonOrnate threadfin breamFish0.8512Leiognathus sp.PonyfishFish0.0413Epinephelus coioidesOrange-spotted grouperFish0.3714Scylla serrataGiant mud crab; Giant mangrove crabCrustacean0.3215Harpiosquilla harpaxMantis shrimpsCrustacean0.2917Charybdis affinisSmoothshelled swimming crabCrustacean0.0618Charybdis natatorRidged swimming crab crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean0.2621Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.34	R
8walgaScaly wniprayFish0.349Arius sp.Sea catfishFish0.0710Scatophagus argusSpotted scatFish0.0111Nemipterus hexodonOrnate threadfin breamFish0.8512Leiognathus sp.PonyfishFish0.0413Epinephelus coioidesOrange-spotted grouperFish0.3714Scylla serrataIndo-Pacific swamp crab/< Giant mud crab; Giant mangrove crabCrustacean0.3215Harpiosquilla harpaxMantis shrimpsCrustacean0.2916Charybdis affinisSmoothshelled swimming crabCrustacean0.0618Charybdis natatorRidged swimming crab crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean0.2621Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.02	R
10Scatophagus argusSpotted scatFish0.0111Nemipterus hexodonOrnate threadfin breamFish0.8512Leiognathus sp.PonyfishFish0.0413Epinephelus coioidesOrange-spotted grouperFish0.3714Scylla serrataIndo-Pacific swamp crab/ Giant mud crab; Giant mangrove crabCrustacean5.6515Harpiosquilla harpaxMantis shrimpsCrustacean0.3216Charybdis affinisSmoothshelled swimming crabCrustacean0.0618Charybdis natatorRidged swimming crab crabCrustacean0.2619Charybdis feriataCrucifix crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean0.2621Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.04	R
11Nemipterus hexodonOrnate threadfin breamFish0.8512Leiognathus sp.PonyfishFish0.0413Epinephelus coioidesOrange-spotted grouperFish0.3714Scylla serrataIndo-Pacific swamp crab/< Giant mud crab; Giant mangrove crabCrustacean 5.65 15Harpiosquilla harpaxMantis shrimpsCrustacean0.3216Charybdis affinisSmoothshelled swimming crabCrustacean0.2917Charybdis luciferaYelloish brown crabCrustacean0.0618Charybdis anisodonTwospined arm swimming crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean0.2621Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.01	R
12Leiognathus sp.PonyfishFish0.0413Epinephelus coioidesOrange-spotted grouperFish0.3714Scylla serrataIndo-Pacific swamp crab/ Giant mud crab; Giant mangrove crabCrustacean 5.65 15Harpiosquilla harpaxMantis shrimpsCrustacean0.3216Charybdis affinisSmoothshelled swimming crabCrustacean0.2917Charybdis natatorYelloish brown crabCrustacean0.0618Charybdis anisodonTwospined arm swimming crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean0.2621Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.01	R
13Epinephelus coioidesOrange-spotted grouper Indo-Pacific swamp crab/ Giant mud crab; Giant mangrove crabFish0.3714Scylla serrataGiant mud crab; Giant mangrove crabCrustacean5.6515Harpiosquilla harpaxMantis shrimpsCrustacean0.3216Charybdis affinisSmoothshelled swimming crabCrustacean0.2917Charybdis luciferaYelloish brown crabCrustacean0.0618Charybdis natatorRidged swimming crab crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean0.2621Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.30	R
14Scylla serrataIndo-Pacific swamp crab/ Giant mud crab; Giant mangrove crabCrustacean5.6515Harpiosquilla harpaxMantis shrimpsCrustacean0.3216Charybdis affinisSmoothshelled swimming crabCrustacean0.2917Charybdis luciferaYelloish brown crabCrustacean0.0618Charybdis natatorRidged swimming crab rabCrustacean0.0619Charybdis anisodonTwospined arm swimming crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean0.0421Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.01	R
14Scylla serrataGiant mud crab; Giant mangrove crabCrustacean5.6515Harpiosquilla harpaxMantis shrimpsCrustacean0.3216Charybdis affinisSmoothshelled swimming crabCrustacean0.2917Charybdis luciferaYelloish brown crabCrustacean0.0618Charybdis natatorRidged swimming crab crabCrustacean0.0619Charybdis anisodonTwospined arm swimming crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean0.0421Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.11	R
15Harpiosquilla harpaxMantis shrimpsCrustacean0.3216Charybdis affinisSmoothshelled swimming crabCrustacean0.2917Charybdis luciferaYelloish brown crabCrustacean0.0618Charybdis natatorRidged swimming crab crabCrustacean0.0619Charybdis anisodonTwospined arm swimming crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean0.0421Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.90	R
16Charybdis aniniscrabCrustacean0.2917Charybdis luciferaYelloish brown crabCrustacean0.0618Charybdis natatorRidged swimming crabCrustacean0.0619Charybdis anisodonTwospined arm swimming crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean3.7721Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.13	R
18Charybdis natatorRidged swimming crab Twospined arm swimming crabCrustacean0.0619Charybdis anisodonTwospined arm swimming crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean3.7721Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.39	D
19Charybdis anisodonTwospined arm swimming crabCrustacean0.2620Charybdis feriataCrucifix crabCrustacean3.7721Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.03	D
19Charybais anisodoncrabCrustacean0.2620Charybais feriataCrucifix crabCrustacean3.7721Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.02	D
21Panaeus monodonGiant tiger prawnCrustacean0.0422Thenus orientalisFlatehead lobsterCrustacean0.04	0.25	D
22 <i>Thenus orientalis</i> Flatehead lobster Crustacean 0.04	0.93	R
	0.02	R
23 Podophthalmus vigil Periscope crab Crustacean 1.40	0.01	R
	0.80	D
24 Myonippe hardwickii ? Crustacean 0.00	0.01	D
25 Lauderia indica ? Crustacean 0.16	0.04	D
26 Portunus petreus?Crustacean0.01	0.01	D
27 <i>Episesarma</i> sp. Vinegar crab Crustacean 0.08	0.01	D
28 Portunus sanguinolentus Threespot swimming crab Crustacean 0.84	0.52	R
29 Babylonia spirata Spiral Babylon Molluscs 0.47	0.34	R
30 Natica sp 1. Snail Molluscs 0.20	0.02	D
31 Natica sp 1. Snail Molluscs 0.11	0.11	D

Table 4. List of species caught in the traps based on the observation from November 3^{rd} , 2018 to November 28th, 2019

		Species Common name		Proportion in		
No.	Species		Group	By Weight	By Number of Ind.	Status
32	Sepia recurvirostra	Curvespine cuttlefish	Molluscs	0.05	0.01	D
33	Melo melo	Indian volute	Molluscs	0.50	0.13	D
34	Harpa major	Major harp	Molluscs	0.11	0.02	D
35	Murex trapa	Rarespined murex	Molluscs	0.02	0.01	D
36	Conus litteratus	Lettered cone	Molluscs	0.02	0.01	D
37	Turricula javana	Javanese turrid	Molluscs	0.04	0.04	D
38	Strombus canarium	Dog conch	Molluscs	0.03	0.01	D
				100.00	100.00	

Note: *) = Protected species based on the Regulation of The Minister of Environment and Forestry of The Republic of Indonesia No. 20 Year 2018 Concerning Type of Protected Plants and Animals.

ETP = Endangered, Threatened and Protected species

- R = Retained species
- D = Discarded species
- **Table 5.** Resume of targeted, retained, and discarded species caught of the BSC trapfishery based on the observation from November 3rd, 2018 to November 28th,2019.

No.	Description	Unit (kg)	Percentage
1	Total weight of BSC (targeted species) caught	1,672.83	80.62
2	Total weight of retained By-catch	330.98	15.95
3	Total weight of discarded By-catch	71.16	3.43
4	Total weight of Non Target Species	402.14	19.38
	Total catch	1,944.69	

Regulation in managing Giant mud crab/Giant mangrove crab (*Scylla serrate*) is catching and/or removing crabs (*Scylla* spp.), with Harmonized System Code 0306.24.10.00, from the territory of the Republic of Indonesia can only be carried out with the following provisions:

- (a) Capturing and/or sending out side of *Scylla* spp. on December 15th to February 5th both in spawning and non-spawning conditions and with carapace widths above 15 (fifteen) cm or weights above 200 (two hundred) grams per individual;
- (b) Capturing and/or sending out side on February 6th to December 14th in a nonspawning condition with carapace widths above 15 (fifteen) cm or a weight above 200 (two hundred) grams per individual;
- (c) Sending out side on December 15th to February 5th both in spawning and nonspawning conditions and with carapace widths above 15 (fifteen) cm or weights above 200 (two hundred) grams per individual originating from aquaculture and evidenced by a Certificate the Origin; or

(d) Sending out side on February 6th to December 14th in a non-spawning condition with carapace widths above 15 (fifteen) cm or a weight above 200 (two hundred) grams per individual originating from aquaculture and evidenced by a Certificate the Origin.

Other retained species that has the proportion between 2-5% is crucifix crab (*Charybdis feriata* [previously name was *Charybdis feriatus*]). This species is unmanaged yet. Thus, the crucifix crab can categorized as **secondary species**.

2.2 Consequence Analysis of the Blue Swimming Crab Stock

Consequence Analysis (CA) is used to score data-deficiency for stock status outcome. Consequence of the fishing activity on the most vulnerable subcomponent was determined by the stakeholder input during the workshop, using quantitative and qualitative biological indicator data. The CA result of BSC stock showed in **Table 6**.

Principle 1: Stock status outcome	-		Consequence Score
Pamekasan blue swimming crab fisheries	Portunus pelagicusPopulation size60		60
	Reproductive capacity		80
		Age/Size/Sex structure	60
		Geographic range	
Rationale for most vulnerable <u>subcomponent</u> Rationale for consequence Score	 Population size as well as reproductive capacity and age/size structure were considered almost equal vulnerable subcomponent based on the impact of exploitation pattern and biomass. Based on available information, fleet structure, fishing area and exploitation rate indicated that the BSC stock in southern Pamekasan is fully exploited. However, trend in exploitation rate biomass and recruitment indicates that fishing is not adversely damaged recruitment dynamics in long time. As the fishery is defined as fully developed and fully capacity, it cannot conclude that its impact on stock size is minimal as well as it's not have an impact to life history and population dynamic parameter. The BSC stock seems to be intensively fished). Available evident suggests that there may be a detectable change in reproductive capacity as the BSC are caught in their first year of growth. The Minimum Landing Size (MLS) of 10 cm CW that will be implemented for this fishery also allow for catching individuals in their first year of growth and the BSC at this size is still <20% SP A retained BSC is defined as one that is retained by traps without having an escape vent. Even though the BSC in their first year of growth and will became a reproductive period and spawned at let once before being caught, they cannot escape from inner traps. Moreover, caught berried female shall be reduced. The harvest strategy ensures that long term recruitment dynamics is not 		fishing area and n southern in exploitation rate, is not adversely s the fishery is cannot conclude as it's not have an arameter. Available evidence ge in reproductive ar of growth. The at will be hing individuals in ze is still <20% SPR. ed by traps without in their first year of and spawned at least from inner traps. ced. The harvest

Table 6.	Consequence analysis score and justification
----------	--

Principle 1: Stock status outcome	Scoring element	Consequence subcomponent	Consequence Score							
	recruitment is not b catch and fleet stru	 Size frequency distribution of the species is available, showing the recruitment is not being adversely damaged. However level of catch and fleet structure do not enable a qualitative assessment t determine that the impact of population dynamics is minimal. <u>Indicators used are:</u> There is one main fleet structure in all fishing area: traps, while another fleet is operate at outside of UoA. The trap fleets have an access to shallow waters (<10 m depth) and few fleets used traps at deeper. In addition, fishing area where the other fleet operates, there were almost no traps fleets operate in these areas. Thus, al of fleets have full access to the stock at almost the entire BSC habitat. There was no stock biomass data yet and implementation of 								
	There is one main f another fleet is ope access to shallow v at deeper. In addition there were almost r of fleets have full and habitat.									
	 minimum landing si SPR <20% (APRI 2 Prohibited to catch 	ze of 10 cm CW for existing	stock remaining as <10% as well as							
	 minimum landing si Identification of num management meas during peak recruitr Data collection of the stock assessment restored 	sery habitat for implemented ure in sufficient season or we ment or nursery habitat prote the BSC catch per-unit of effec- need to be made durable in the status over time and impre-	d another vide (close season ection). ort (CPUE) and order to monitor							
	Detail distribution in on a routine seasor	 <u>Fishing area and seasonality:</u> Detail distribution information of traps fleet's fishing effort is coller on a routine seasonal basis (representative of crab fishing seaso including the number of traps per-boat. 								
	The BSC biological un part of southern Madur considering the BSC ir single stock, including northern Madura water the BSC of southern M	scoring the BSC stock/biolo it was defined as Southern I ra waters. Therefore, PI 1.1 in the area of Southern Pame southern Madura waters. T rs as part of Java Sea might ladura. However, this appro wning biology and larval disp	Pamekasan water as .1 was scored by ekasan water as The BSC stock in the same stock with ach was considered							

Source: Table PF2 (CA Scoring template) and Table PF3 (CA scoring of subcomponents) of MSC FCP v2.1, p.74-75.

2.3 Productivity-Susceptibility Analysis (PSA)

The BSC stock status in Pamekasan waters not known well and the BSC productivitysusceptibility has not been analysed yet in Southern Madura. The BSC productivity is influenced by their biological characteristics and habitat, whiles their susceptibility influenced by such as type, spatial and vertical aggregation of fishery. Productivity and Susceptibility of BSC as target species showed in **Table 7** and **Table 8**. All species ≥2% by weight of the total catch have been assessed, including ETP species (**Table 9** to **Table 14**). The score for each component of the PSA is recorded in the MSC PSA Worksheet for RBF assessment (**Table 15** to **Table 19**).

2.4 Retained Species Risks

The BSC or *Portunus pelagicus* stock (PI 1.1.1), *Charybdis feriata* (PI 2.2.1), and *Tachypleus gigas* (PI 2.3.1) in Southern Pamekasan traps fisheries are medium potential risk category in the sound of productivity susceptibility analysis. The PSA score for *Portunus pelagicus* was 2.77 and MSC PSA score 76. The BSC risk category is also influenced high score of susceptibility and it is no clearly catches and effort data of traps fisheries. Subsequently, the PSA score for *Charybdis feriata* was 2.86 and MSC score was 77. Meanwhile, the PSA score for *Tachypleus gigas* was 2.99 and MSC score was 68. However, *Scylla serrata* (PI 2.1.1) can categorized as low potential risk (**Figure 5**), with the PSA score was 2.51 and MSC score was 84.

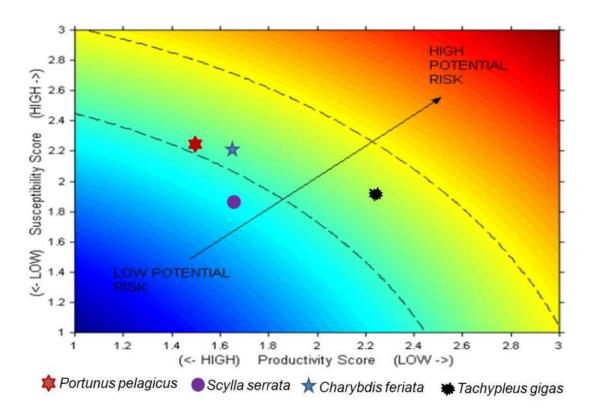


Figure 5. Retained Species Risk of the Southern Pamekasan BSC Traps Fisheries

3 Habitat Assessment

3.1 Habitat Consequence Analysis

The result of habitat consequence spatial analysis (CSA) in this RBF shown that the consequence and spatial score were 1.56 and 1.59, while CSA score was 2.22 (**Table 19**).

3.2 Habitat Risk

Habitat risk of traps fisheries in Southern Pamekasan can categorized as low potential risk in the sound of consequence spatial analysis analysis (**Table 19**).

4 Retained Species and Habitat Assessment MSC Score

Based on consequence analysis (CA) and PSA of target species (PI 1.1.1) as well as PSA analysis of ETP species (PI 2.31), the final MSC RBF Score of each PI was 68 (Pass with condition) (**Table 20**). Meanwhile, based on PSA of primary species (PI 2.1.1) and habitat consequence spatial analysis (PI 2.4.1), the final MSC RBF Score of each PI was 84 and 92 (Unconditional pass).

	Automated MSC scores									
PI	MSC score	Status								
1.1.1	68	Pass with condition								
2.1.1	84	Unconditional Pass								
2.2.1	77	Pass with condition								
2.3.1	68	Pass with condition								
2.4.1	92	Unconditional Pass								

Table 20. MSC RBF Automated Score of the BSC fishery in Pamekasan water of East Java

5 Ecosystem Assessment

Ecosystem assessment using the Scale Intensity Consequence Analysis (SICA) in this RBF cannot be conducted due to lack of appropriate data information and did not have enough time to discuss in the workshop.

Productivity determinant	High productivity (Low risk, score=1)	Medium productivity (medium risk, score=2)	Low productivity (high risk, score=3)	Portunus pelagicus	Source of Verification	Score
Average age at maturity	<5 years	5-15 years	>15 years	The BSC reach maturity at the age of 8 -10 months.	Kangas (2000); Zairion (2015); Zairion <i>et al.</i> , (2015a)	1
Average maximum age	<10 years	10-25 years	>25 years	3-4 years	Kembaren et al. (2012); Ernawati (2013); Zairion (2015); Hamid (2015)	1
Fecundity	>20,000 eggs per year	100-20,000 eggs per year	<100 eggs per year	264,000- 1,534,000 per-batch	Josileen (2013); Ikhwanuddin <i>et al.,</i> (2011; 2012); Zairion <i>et al.</i> , (2015b)	1
Average maximum size (not to be used when scoring invertebrate species)	<100 cm	100-300 cm	>300 cm	 -	-	-
Average size at maturity (not to be used when scoring invertebrate species)	<40 cm	40-200 cm	>200 cm	-	-	-
Reproductive strategy	Broadcast spawner	Demersal egg layer	Live bearer	Broadcast spawner	Kangas (2000); Zairion (2015); Hamid (2015)	1
Trophic Level	<2.75	2.75-3.25	>3.25	Approximately 2.8- 2.9	http://www.bbc.co.uk/blue planet/infoburts/trphic_levels.bg/html	2
Density dependence (to be used when scoring invertebrate only)	Compensatory dynamics at low population size demonstrated or likely	No depensatory or compensatory dynamics at low population size demonstrated or likely	Depensatory dynamics at low population size (Allee effect) demonstrated or likely	Based on population dynamic study, It seem to be depensatory dynamics at low population size demostrated or likely	Ernawati (2013); Zairion (2015); Hamid (2015)	3

Source: Table PF4 of MSC Fisheries Certification Process V 2.1, p. 77-78.

 Table 8.
 The Blue Swimming Crab (Portunus pelagicus)
 Susceptibility Attributes, Ranking, and Scores

Susceptibility attributes	Low susceptibility (low risk, score=1)	Medium susceptibility (medium risk, score=2)	High susceptibility (High risk, score=3)	Portunus pelagicus	Source of Verification	Score
Areal Overlap (Availability) Overlap of the fishing effort with a species concentration of the stock.	<10% overlap	10-30% overlap	>30% overlap	The BSC inhabit in shallow waters to the depth 40 m while fishing effort are distributed in Southern Pamekasan and might overlap with 10-20% of BSC concentration stock in southern Madura waters.	RBF workshop on 9-10 Juli 2019; Wijayanti <i>et al.</i> , (2018); Nitiratsuwan (2010); Ernawati (2013); Zairion (2015); Hamid (2015).	2
Vertical Overlap (Encounterability) The position of the stock/species within the water column relative to the fishing gear, and the position of the stock/species within the habitat relative to the fishing gear.	Low overlap with fishing gear	Medium overlap with fishing gear	High overlap with fishing gear	The position of the BSC stock in Southern Pamekasan waters seem to have high overlap with the trap fishing gear	RBF workshop on July 10 th , 2019; Wijayanti <i>et al</i> ., (2018)	3
Selectivity of gear types Potential of gear to capture or retain the species	a Individual . <size at<br="">maturity are rarely caught</size>	a. Individual <size at maturity are regularly caught</size 	a. Individual <size at maturity are frequently caught</size 	Traps fishing gear was using closing net with mesh size 1.5 inch and without escape van, whiles its operation was using bait. However, Individual with the	RBF workshop on July 10 th , 2019 and Field observation	3

Susceptibility attributes	:	Low susceptibility (low risk, score=1)		Medium susceptibility (medium risk, score=2)		High susceptibility (High risk, score=3)		Portunus pelagicus	Source of Verification	Score
	b	Individual <size at<br="">maturity can escape or</size>	b.	Individual <half size<br="" the="">at maturity can escape or</half>	b.	Individual <half size<br="" the="">at maturity are retained</half>		size less than the size at maturity are regularly caught. Individual <half the<br="">size at maturity are retained by gear</half>		
Post-capture mortality (PCM) The change that, if captured, a species would be released and that it would be in a condition permitting subsequent survival		avoid gear Evidence of ajority released ost-capture and survival		avoid gear vidence of some eased post-capture and survival	m I	by gear etained species or ajority dead when released Default score for retained species (Principle 1 or Principle 2).		Most of retained species are still life, but there was no evidence that some release post- capture and survival.	RBF workshop on July 10 th , 2019 and Field observation	3

Source: Table PF5 of MSC Fisheries Certification Process V 2.1, p.78-79.

Table 9. T	The Indo-Pacific Swam	o Crab (So	vlla serrate	Productivity	/ Attributes,	Ranking, and Scores
------------	-----------------------	------------	--------------	--------------	---------------	---------------------

			_					
Productivity determinant	High productivity (Low risk, score=1)	Medium productivity (medium risk, score=2)	Low productivity (high risk, score=3)		Scylla serrata	Source of Verification	Score	
			•					
Average age at maturity	<5 years	5-15 years	>15 years		The crab reaches sexual maturity at 18 to 24 months.	Siahaena (2008); Bir (2016) https://www.researchgate.net/publicati on/336702126 Mud crab's Scylla s errata_Reproduction_and_Breeding_ Technique_Course	1	
Average maximum age	<10 years	10-25 years	>25 years		5-6 years	Hidayat <i>et al.,</i> (2017);	1	
Fecundity	>20,000 eggs per year	100-20,000 eggs per year	<100 eggs per year		0.327 million to 3.41 millions in the size range of 8.7cm to11.4.cm carapace length	Siahainenia (2008); Vijaya Bharathi <i>et</i> <i>al.</i> , (2017) <u>https://www.researchgate.net/publicati</u> <u>on/319876434_Sex_ratio_and_Repro</u> <u>ductive Performance of the female</u> <u>mud_crab_Scylla_serrata_in_India;</u> <u>http://www.fao.org/fishery/culturedspe</u> <u>cies/Scylla_serrata/en</u>	1	
Average maximum size								
(not to be used when scoring invertebrate species)	<100 cm	100-300 cm	>300 cm		28 cm	http://www.fao.org/fishery/species/ 2637/en	-	
Average size at maturity (not to be used when scoring invertebrate species)	<40 cm	40-200 cm	>200 cm		Female was 11.8 to 12,3 cm and Male 9,2-10 cm	Siahainenia (2008); https://www.sciencedirect.com/scie nce/article/pii/S0272771484710572	-	
Reproductive strategy	Broadcast spawner	Demersal egg layer	Live bearer		Broadcast spawner	Siahainenia (2008);	1	
Trophic Level	<2.75	2.75-3.25	>3.25		No data yet	No Verification	3	
Density dependence (to be used when scoring invertebrate only)	Compensatory dynamics at low population size demonstrated or likely	No depensatory or compensatory dynamics at low population size demonstrated or likely	Depensatory dynamics at low population size (Allee effect) demonstrated or likely		No data, but it seem to be depensatory dynamics at low population size demostrated or likely		3	

Source: Table PF4 of MSC Fisheries Certification Process V 2.1, p. 77-78.

 Table 10. The Indo-Pacific Swamp Crab (Scylla serrate) Susceptibility Attributes, Ranking, and Scores

Susceptibility attributes	Low susceptibility (low risk, score=1)	Medium susceptibility (medium risk, score=2)	High susceptibility (High risk, score=3)	Scylla serrata	Source of Verification	Score
Areal Overlap (Availability) Overlap of the fishing effort with a species concentration of the stock.	<10% overlap	10-30% overlap	>30% overlap	Scylla serrata inhabit in mangrove habitat and shallow waters and migrate to the sea for spawning while fishing effort are distributed in sounthern Pamekasan and might overlap with above 10% of Scylla serrata concentration stock in southern Madura waters.	Siahainenia (2008); Vijaya Bharathi <i>et al.</i> , (2017); RBF workshop on July 10 th , 2019;	2
Vertical Overlap (Encounterability) The position of the stock/species within the water column relative to the fishing gear, and the position of the stock/species within the habitat relative to the fishing gear.	Low overlap with fishing gear	Medium overlap with fishing gear	High overlap with fishing gear	The position of the Scylla serrata stock in Southern Pamekasan waters seem to have medium overlap with the trap fishing gear, since the trap operate in the depth between 3-25 m.	RBF workshop on July 10 th , 2019; and Field observation	2
Selectivity of gear types Potential of gear to capture or retain the species	a Individual . <size at<br="">maturity are rarely caught</size>	a. Individual <size at maturity are regularly caught</size 	a. Individual <size at maturity are frequently caught</size 	Traps fishing gear was using closing net with mesh size 1.5 inch and without escape van, whiles its	RBF workshop on July 10 th , 2019; and Field observation	3

Susceptibility attributes		Low susceptibility (low risk, score=1)		Medium susceptibility (medium risk, score=2)	su	High susceptibility (High risk, score=3)		susceptibility (High		susceptibility (High		susceptibility (High		susceptibility (High		susceptibility (High		Scylla serrata	Source of Verification	Score
	b	Individual <size at<br="">maturity can escape or avoid gear</size>	b.	Individual <half size<br="" the="">at maturity can escape or avoid gear</half>	b.	Individual <half size<br="" the="">at maturity are retained by gear</half>	-	operation was using bait. However, no data yet to individual with the size less than the size at maturity are regularly caught. Individual <half the<br="">size at maturity are retained by gear</half>	RBF workshop on July 10 th , 2019; and Field observation											
Post-capture mortality (PCM) The change that, if captured, a species would be released and that it would be in a condition permitting subsequent survival		Evidence of ajority released ost-capture and survival	_	vidence of some eased post-capture and survival	m [etained species or ajority dead when released Default score for retained species (Principle 1 or Principle 2).		Most of retained species are still life, but there was no evidence that some release post- capture and survival	RBF workshop on July 10 th , 2019; and Field observation	3										

Source: Table PF5 of MSC Fisheries Certification Process V 2.1, p.78-79.

Productivity determinant	High productivity (Low risk, score=1)	Medium productivity (medium risk, score=2)	Low productivity (high risk, score=3)	Charybdis feriata	Source of Verification	Score
Average age at maturity	<5 years	5-15 years	>15 years	The Crucifix crab reaches maturity at the age 7 months.	Dineshbabu (2011) <u>Https://www.researchgate.net/publi</u> <u>cation/228838508</u> , Biology_and_exploitation_of_the_cr ucifix crab Charybdis	1
Average maximum age	<10 years	10-25 years	>25 years	3-4 years	Dash <i>et al.</i> , (2014) http://eprints.cmfri.org.in/10296/1/1_Da sh_IJF_61.4.pdf; Dineshbabu (2011)	1
Fecundity	>20,000 eggs per year	100-20,000 eggs per year	<100 eggs per year	40,000 to 1,400,000 per-batch	Parado-estepa <i>et at.,</i> (2007) <u>https://onlinelibrary.wiley.com/doi/a</u> <u>bs/10.1111/j.1365-</u> <u>2109.2007.01724.x;</u> Josilen (2011) http://eprints.cmfri.org.in/8696/1/Jo sileen_jose.pdf;	1
Average maximum size (not to be used when scoring invertebrate species)	<100 cm	100-300 cm	>300 cm	20 cm	https://www.sealifebase.ca/summar y/Charybdis-feriatus.html https://www.researchgate.net/publi cation/ 279643531_Captive_spawning_hatc hing_and _larval_development_of_crucifix_cra b_ Charybdis_feriatus_Linnaeus_1758	-
Average size at maturity (not to be used when scoring invertebrate species)	<40 cm	40-200 cm	>200 cm	7 cm	Dineshbabu (2011) Https://www.researchgate.net/publi cation/228838508,	-

Productivity determinant	High productivity (Low risk, score=1)	Medium productivity (medium risk, score=2)	Low productivity (high risk, score=3)	Charybdis feriata	Source of Verification	Score
Reproductive strategy	Broadcast spawner	Demersal egg layer	Live bearer	Broadcast spawner	Josilen (2011) http://eprints.cmfri.org.in/8696/1/Jo sileen_jose.pdf;	1
Trophic Level	<2.75	2.75-3.25	>3.25	No data yet	-	3
Density dependence (to be used when scoring invertebrate only)	Compensatory dynamics at low population size demonstrated or likely	No depensatory or compensatory dynamics at low population size demonstrated or likely	Depensatory dynamics at low population size (Allee effect) demonstrated or likely	Based on population dynamic study, It seem to be depensatory dynamics at low population size demostrated or likely	Dineshbabu (2011) <u>Https://www.researchgate.net/publi</u> <u>cation/228838508</u> ,	3

Source: Table PF4 of MSC Fisheries Certification Process V 2.1, p. 77-78.

Table 12. The Crucifix Crab (Charybdis feriata) Susceptibility Attributes, Ranking, and Scores

Susceptibility attributes	Low susceptibility (low risk, score=1)	Medium susceptibility (medium risk, score=2)	High susceptibility (High risk, score=3)	Charybdis feriata	Source of Verification	Score
Areal Overlap (Availability) Overlap of the fishing effort with a species concentration of the stock.	<10% overlap	10-30% overlap	>30% overlap	The Crucifix crab inhabit in sandy sediment at shallow waters to the depth 70 m while fishing effort are distributed in Southern Pamekasan and might overlap with 10-20% of Crucifix crab concentration stock in southern Madura waters.	RBF workshop on July 10 th , 2019; and Field observation	2
Vertical Overlap (Encounterability) The position of the stock/species within the water column relative to the fishing gear, and the position of the stock/species within the habitat relative to the fishing gear.	Low overlap with fishing gear	Medium overlap with fishing gear	High overlap with fishing gear	The position of the Crucifix crab stock in Southern Pamekasan waters seem to have high overlap with the trap fishing gear	RBF workshop on July 10 th , 2019; and Field observation	3
Selectivity of gear types Potential of gear to capture or retain the species	a Individual . <size at<br="">maturity are rarely caught</size>	a. Individual <size at maturity are regularly caught</size 	a. Individual <size at maturity are frequently caught</size 	Traps fishing gear was using closing net with mesh size 1.5 inch and without escape van, whiles its operation was using bait.	RBF workshop on July 10 th , 2019; and Field observation	3

Susceptibility attributes	s	Low susceptibility (low risk, score=1)		Medium susceptibility (medium risk, score=2)	su	High sceptibility (High risk, score=3)		Charybdis feriata	Source of Verification	Score
	b	Individual <size at<br="">maturity can escape or avoid gear</size>	b.	Individual <half size<br="" the="">at maturity can escape or avoid gear</half>	b.	Individual <half size<br="" the="">at maturity are retained by gear</half>		However, no data yet to individual with the size less than the size at maturity are regularly caught Individual <half the<br="">size at maturity are retained by gear</half>	RBF workshop on July 10 th , 2019; and Field observation	
Post-capture mortality (PCM) The change that, if captured, a species would be released and that it would be in a condition permitting subsequent survival	ma	Evidence of ajority released st-capture and survival	_	vidence of some eased post-capture and survival	m I	by gear Retained species or najority dead when released Default score for retained species (Principle 1 or Principle 2).		Most of retained species are still life, but there was no evidence that some release post- capture and survival	RBF workshop on July 10 th , 2019; and Field observation	3

Source: Table PF5 of MSC Fisheries Certification Process V 2.1, p.78-79.

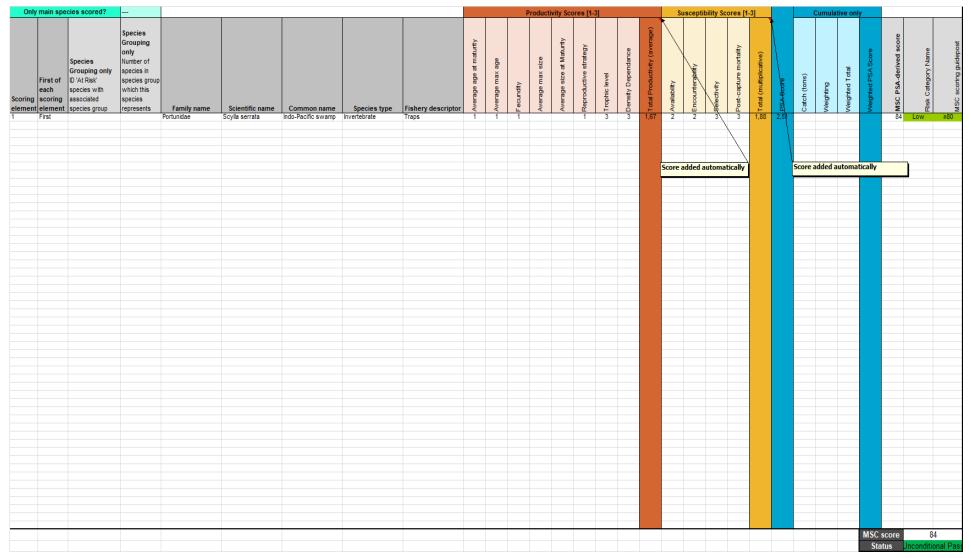
 Table 13. The Indo-Pacific Horseshoe Crab (Tachypleus gigas) Productivity Attributes, Ranking, and Scores

Productivity determinant	High productivity (Low risk, score=1)	Medium productivity (medium risk, score=2)	Low productivity (high risk, score=3)	Tachypleus gigas	Source of Verification	
Average age at maturity	<5 years	5-15 years	>15 years	No data yet and it assume that one third to half of average maximum age	-	
Average maximum age	<10 years	10-25 years	>25 years	12 years or 12-20 years	Tan <i>et al.</i> , (2012)- <u>https://www.researchgate.net/p</u> <u>ublication/258500377_Horseshoe</u> <u>Crab_Tachypleus_gigas_Muller</u> <u>1785_Spawning_Population_at_B</u> <u>alok_Beach_Kuantan_Pahang_M</u> <u>alaysia;</u>	
Fecundity	>20,000 eggs per year	100-20,000 eggs per year	<100 eggs per year	1,242-6,565 egg	Chatterji (1995)- https://core.ac.uk/ download/pdf/33721036.pdf; Brockmann & Smith (2009)- https: //www.horseshoecrab.org/research/sit es/default/files/UP%20DONE%20Bro ckmann%20and%20Smith.pdf	
Average maximum size (not to be used when scoring invertebrate species)	<100 cm	100-300 cm	>300 cm	60 cm	https://www.britannica.com/animal/ho rseshoe-crab/Conservation-status	
Average size at maturity (not to be used when scoring invertebrate species)	<40 cm	40-200 cm	>200 cm	24,6 cm	Chatterji (1995)- https://core.ac.uk/download/pdf/33721 036.pdf	

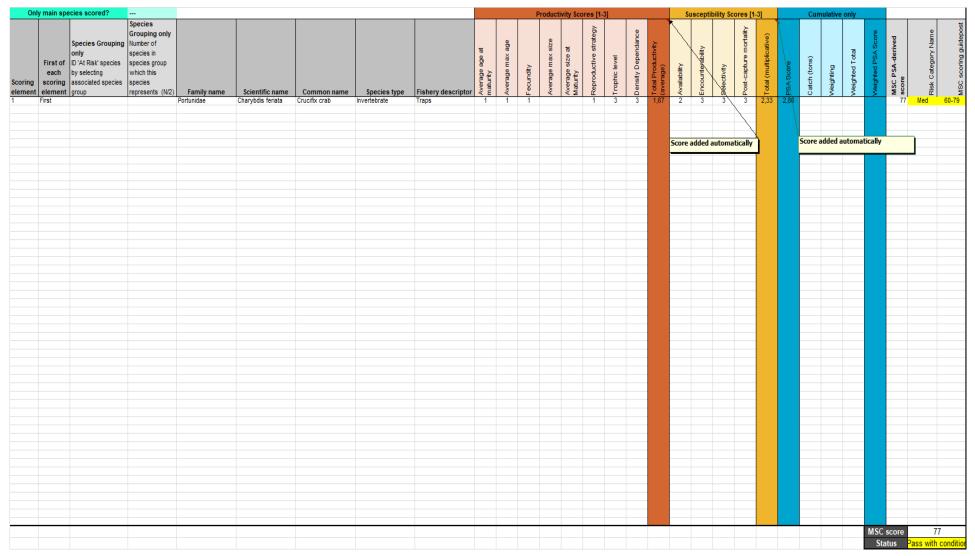
Productivity determinant	High productivity (Low risk, score=1)	Medium productivity (medium risk, score=2)	Low productivity (high risk, score=3)	Tachypleus gigas	Source of Verification	Score
Reproductive strategy	Broadcast spawner	Demersal egg layer	Live bearer	Lay down their egg on the beach until 10 cm depth.	Zaleha <i>et al.</i> , 2012- https://www.researchgate.net/publicati on/227859340 Spawning and Nesti ng Behaviour of Tachypleus gigas along the East Coast of Peninsular Malaysia	2
Trophic Level	<2.75	2.75-3.25	>3.25	No data	-	3
Density dependence (to be used when scoring invertebrate only)	Compensatory dynamics at low population size demonstrated or likely	No depensatory or compensatory dynamics at low population size demonstrated or likely	Depensatory dynamics at low population size (Allee effect) demonstrated or likely	No data, but it seem to be depensatory dynamics at low population size demostrated or likely	-	3

Source: Table PF4 of MSC Fisheries Certification Process V 2.1, p. 77-78.

 Table 14.
 The Indo-Pacific Horseshoe Crab (Tachypleus gigas)
 Susceptibility Attributes, Ranking, and Scores


Susceptibility attributes	Low susceptibility (low risk, score=1)	Medium susceptibility (medium risk, score=2)	High susceptibility (High risk, score=3)	Tachypleus gigas	Source of Verification	Score
Areal Overlap (Availability) Overlap of the fishing effort with a species concentration of the stock.	<10% overlap	10-30% overlap	>30% overlap	Juvenile and adult of Indo-pacific (Coastal) horseshoe crab inhabit in shallow waters to the depth 40 m while fishing effort are distributed in Southern Pamekasan and might overlap with 10-20% of horseshoe crab concentration in southern Madura waters.	RBF workshop on 9-10 Juli 2019; <u>https://www.google.com/search?cli</u> <u>ent=firefox-b-d&q=Indo-</u> <u>Pacific+horseshoe+crab;</u> <u>http://www.wildsingapore.com/wildf</u> <u>acts/arthropoda/limulidae/tachypleu</u> <u>s.htm;</u>	2
Vertical Overlap (Encounterability) The position of the stock/species within the water column relative to the fishing gear, and the position of the stock/species within the habitat relative to the fishing gear.	Low overlap with fishing gear	Medium overlap with fishing gear	High overlap with fishing gear	The position of the Indo-pacific (Coastal) horseshoe crab in Southern Pamekasan waters related to the the size of fishing seem to have medium overlap with the trap fishing gear	RBF workshop on July 10 th , 2019; and Field observation	2

Susceptibility attributes	S	Low susceptibility (low risk, score=1)		Medium susceptibility (medium risk, score=2)	su	High sceptibility (High risk, score=3)	Tachypleus gigas	Source of Verification	Score
Selectivity of gear types Potential of gear to capture or retain the species	a · b	Individual <size at<br="">maturity are rarely caught Individual <size at<br="">maturity can</size></size>	a. b.	Individual <size at maturity are regularly caught Individual <half size<br="" the="">at maturity</half></size 	a. b.	Individual <size at maturity are frequently caught Individual <half size<br="" the="">at maturity</half></size 	Traps fishing gear was using closing net with mesh size 1.5 inch and without escape van. However, Individual with the size less than the size at maturity are regularly caught. Individual <half the<br="">size at maturity are retained by gear</half>	RBF workshop on July 10 th , 2019; and Field observation RBF workshop on July 10 th , 2019; and Field observation	3
		escape or avoid gear		can escape or avoid gear		are retained by gear	retained by gear		
Post-capture mortality (PCM) The change that, if captured, a species would be released and that it would be in a condition permitting subsequent survival		Evidence of ajority released ost-capture and survival		vidence of some eased post-capture and survival	m I	etained species or ajority dead when released Default score for retained species (Principle 1 or Principle 2).	Most of retained species are still life, but there was no evidence that some release post- capture and survival.	RBF workshop on July 10 th , 2019; and Field observation	3


Source: Table PF5 of MSC Fisheries Certification Process V 2.1, p.78-79.

								F	Producti	vity Sc	ores [1-:	3]			Su	uscepti	ibility Sc	ores [1	-3]		C	umulat	ive only					
First of each scoring element First	Family name Portunidae	Scientific name Portunus pelagicus	Common name Blue swimming crab	Species type Invertebrate	Fishery descriptor Traps	 Average age at maturity 	→ Average max age	→ Fecundity	Average max size	Average size at Maturity	 Reproductive strategy 	N Trophic level	ω Density Dependance	27 Total Productivity (average)	N Avaitability	د Encounterability	ω Selectivity	ω Post-capture mortality	2 2 3 3 3 3 3	PSA Score	on Catch (tons)	0 Weighting	2 Weighted Total	Weighted PSA Score	MSC PSA-derived score	paw Risk Category Name	MSC scoring guidepost	Consequence Score (CA) Final MSC score (per
													,	4				-1	-					\mathbb{N}				
						S	core ac	lded			or PI 1. he comb leograph of all fish mpacting	bined nical ov eries	erlap	For PI the convertical fisherie the sto	mbined I overlap s impact	o of all			For PI 1. shall be individua fishery o target st	determi Ily for e n the g	ined ach iven	shall be individu	1.1.1, th determ ally for e on the <u>c</u> stock.	ined each	Score a	added		
														-														
														-														
														-														
														-														
														-														
																										MSC s	score	68
																										Sta	tus	ss with cor

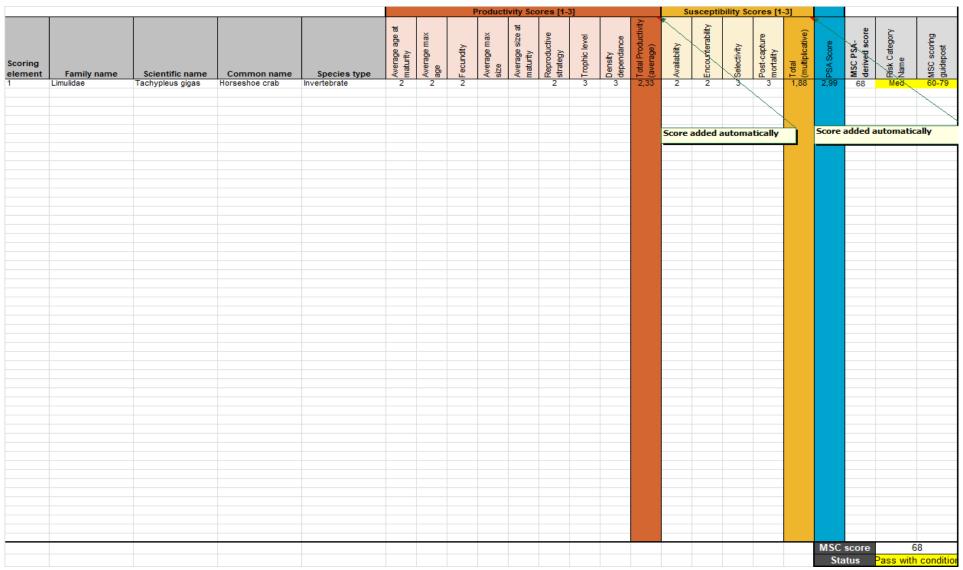

Table 15. MSC RBF Worksheet (PI 1.1.1 PSA) of the BSC fishery by traps in Pamekasan water of East Java

Table 16. MSC RBF Worksheet (PI 2.1.1 PSA) of primary species of the BSC fishery in Pamekasan water of East Java

Table 17. MSC RBF Worksheet (PI 2.2.1 PSA) of Secondary species of the BSC fishery in Pamekasan water of East Java

Table 18. MSC RBF Worksheet (PI 2.3.1 PSA) of ETP species of the BSC fishery in Pamekasan water of East Java

0	nly main habitats sc	ored?							Cons	sequen	ce scor	e [1-3]		_	Sp	atial score [0.5-3]						
				abitat details				oitat Ictivity		Coarle	abitat in	toractio								8		
			n	abitat details								I	-	8	E	e B	oility	e		erix	2	
Scoring	UoA/Gear type UoA/Traps	Biome	Sub-biome	Feature	Habitat type	Depth (m) 5-20m	Regeneration of biota	Natural disturbance	Removability of biota	Removability of substratum	Substratum hardness	Substratum	Seabed slope	Consequence score	Gear footprint	Spatial overlap	Encounterability	Spatial score	CSA score	MSC CSA-derived score	Risk category	MSC scoring guidepost
1	UoA/Traps	Coast	Coastal-Margin	sediment plan	Habitat type Fine/low relief/fauna	5-20m	1	1	2	1	3	3	1	1,56	1	2	2	1,59	2,22	92	Low	≥80
																				score		92
																			Sta	atus	Unconditi	ional Pa

Table 19. MSC RBF Worksheet (PI 2.4.1 CSA) of the BSC fishery in Pamekasan water of East Java

6. General Evaluation

Based on available data and information related to attributes analyzed in RBF, this RBF assessment can figure out representatively of PI 1.1.1 and PI 2.1.1 to PI 2.4.1. However, it is still found several limitations in the RBF assessment.

Susceptibility analysis was conducted roughly due to there was no spatial-temporal fishing ground mapping as well as spatial temporal of community structure at the BSC fishing area and their distribution. Based on available data and information during the workshop, the vulnerable habitat and the high potential BSC nursery habitat were still remained sufficient information. Thus, mapping on the vulnerable habitat, the high potential BSC nursery habitat and its environmental quality status are required for other BSC management options purposes. Species association might also be considered in the sound of community interaction and ecosystem balance.

Based on CA of BSC, the BSC stock seem to be fully exploited, even though based PAS PSA resulted medium risk. This condition might be related to high fishing efforts and fishing intensity or over capacity and influencing the stock. Reducing fishing effort is considered. On the other hand, high productivity of the BSC seem to be not guarantee to stock rebuilding without increasing SPR or reproductive capacity by strictly implementing minimum legal size (MLS) or released captured egg bearing female or both. This condition might relate to offspring survival and recruitment succeeds as well as the BSC habitat quality. Habitat degradation could be also affected by sedimentation along coastal waters, and etc.

7. Conclusion and recommendation

Based on available data and information collected from the field and the RBF workshop, the fully RBF assessment could not be conducted yet. High productivity of the BSC seem to be not guarantee stock rebuilding and might be relate to over fished, over capacity, offspring survival and recruitment succeeds as well as the BSC habitat quality.

Recommendations:

- Recording daily, monthly and annually catches BSC and continued recording of the BSC CPUE data;
- Mapping spatial-temporal fishing ground and spatial-temporal community structure at the BSC fishing area;
- Mapping vulnerable habitat, the high potential BSC nursery habitat and its environmental quality status;
- Stock rebuilding could be by integrated management, i.e., reducing fishing effort; increasing the BSC reproduction capacity, strictly implemented minimum legal size of 10 cm CW, protect the high potential and sufficient wide area of the BSC nursery habitat.

References

- Astutik EP, Ni'am AK, Apriliya NR. 2017. Karakteristik daerah potensial penangkapan rajungan (*Portunus pelagicus*) berdasarkan data penginderaan jauh di perairan Kabupaten Pamekasan. Laporan Penelitian. PS Ilmu Kelautan Universitas Trunojoyo.
- Brockmann HJ and Smith MD. 2009. Reproductive Competition and Sexual Selection in Horseshoe Crabs. *In* Tanacredi *et al.* (eds). Biology and Conservation of Horseshoe Crabs. Springer. pp 199-221.
- Chatterji A. 1995. Fecundity of the Indian horseshoe crab, *Tachypleus gigas* (muller) from Balramgari (Orissa). *Pakistan Journal of Marine Sciences*. 4(2): 127-131.
- Dash G, Sen S, Koya KH, Sreenath KR, Thangavelu R, Mojjada SK, and Zala MS. 2014.
- Dewantara W, Sulistiono, Zairion. 2017. Growth of Mud Crab (*Scylla tranquebarica* Fabricus, 1798) in the Estuary of West Segara Anakan, Cilacap, Indonesia. *International Journal of Sciences: Basic and Applied Research (IJSBAR)* 36(2): 202-217.
- Analysis of fishery and stock of the portunid crab, *Charybdis feriata* (Linnaeus, 1758) from Veraval waters, North-west coast of India. *Indian J. Fish.*, 61(4):1-9.
- [DGCF] Directorate General of Capture Fisheries. 2017. Capture fisheries statistic of 2016, Directorate General of Capture Fisheries, Ministry of Fisheries and Marine Affair of Indonesia. Jakarta.
- Dineshbabu AP. 2011. Biology and exploitation of the crucifix crab, *Charybdis (Charybdis) feriata* (Linnaeus, 1758) (Brachyura: Portunidae) from Karnataka coast, India. *Indian J. Fish.*, 58(1): 25-29.
- Ernawati T, Semiono B, Madduppa H. 2017. Reproductive ecology, spawning potential, and breeding season of blue swimming crab (Portunidae: *Portunus pelag*icus) in Java Sea, Indonesia. *BIODIVERSITAS* 18 (4): 1705-1713.
- Ernawati T. 2013. Dinamika populasi dan pengkajian stok sumberdaya rajungan (*Portunus pelagicus* Linnaeus) di perairan Kabupaten Pati dan sekitarnya [Population dynamic and stock assessment of the blue swimming crab (*Portunus pelagicus* Linnaeus) in coastal waters of Pati and adjacent area]. Magister thesis. Bogor (ID): Graduate School of Bogor Agricultural University (IPB). 79p.
- Hamid A, Lumbanbatu DTF, Riani E, Wardiatno Y. 2016. Reproductive biology of blue swimming crab (Portunus pelagicus Linnaeus, 1758) in Lasongko Bay, Southeast Sulawesi-Indonesia. AACL Bioflux, 9 (5): 0153-1066.
- Hamid A. 2015. Habitat, biologi reproduksi dan dinamika populasi rajungan (*Portunus pelagicus* Linnaeus 1758) sebagai dasar pengelolaan di Teluk Lasongko, Sulawesi Tenggara [Habitat, reproductive biology and population dynamic of the blue swimming crab (*Portunus pelagicus* Linnaeus 1758) as a basic of its management at Lasongko Bay, Southeast Sulawesi]. PhD Dissertation. Graduate School of Bogor Agricultural University (IPB). 160p.
- Hidayat T, Yusuf HN, Nurulludin, dan Pane ARP. 2017. Parameter populasi kepiting bakau(*Scylla serrata*) di perairan Pasaman Barat. Bawal Widya Riset Perikanan Tangkap 9(3): 207-213.

- Ikhwanuddin M, Shabdin ML, Abol-Munafi AB. 2011. Fecundity of blue swimming crab, Portunus pelagicus (Linnaeus 1758) from Sematan fishing district, Sarawak Coastal Waters of South China Sea. Borneo Journal of Science Technology 1(1): 46-51.
- Ikhwanuddin M, Azra MN, Siti-Aimuni H, Abol-Monafi AB. 2012a. Fecundity, Embryonic and ovarian development of blue swimming crab, *Portunus pelagicus* (Linnaeus, 1758) in Coastal Water of Johor Malaysia. *Pakistan Journal of Biological Science* 15 (15): 720-728. doi: 10.3923/ pjbs.2012.720. 728.
- Josileen J. 2011. Captive spawning, hatching and larval development of crucifix crab, *Charybdis feriatus* (Linnaeus, 1758). *J. Mar. Biol. Ass. India*, 53 (1): 35-40.
- Josileen J. 2013. Fecundity of the blue swimmer crab, *Portunus pelagicus* (Linnaeus, 1758) (Decapoda, Brachyura, Portunidae) along the Coast of Mandapam, Tamil Nadu, India. *Crustaceana* 86 (1): 48-55. doi:10.1163/15685403-00003139.
- Kangas MI. 2000. Synopsis of the biology and exploitation of the blue swimmer crab, *Portunus pelagicus* Linnaeus, in Western Australia. Fisheries Western Australia, Perth, Western Australia. *Fisheries Research Report* No. 121.
- Kembaren DD, Ernawati T, Suprapto. 2012. Biologi dan parameter populasi rajungan (*Portunus pelagicus*) di Perairan Bone dan Sekitarnya. *Jurnal Penelitian Perikanan Indonesia (JPPI)* 18(4):273-281.
- [MMAF] Ministry Marine Affair and Fisheries. 2016. Minister of Ministry of Marine Affair and Fisheries Decree No. 56 year 2016 concerning Prohibition of catching and / or exporting of lobster (*Panulirus* spp.), crab (*Scylla* spp.), and blue swimming crab (*Portunus* spp.) from country region of the Republic of Indonesia.
- [MEF] Minister of Environment and Forestry of the Republic of Indonesia 2018. Regulation of Minister of Environment and Forestry of the Republic of Indonesia No. 20 Year 2018 Concerning Type of Protected Plants and Animals.
- [MSC] Marine Stewardship Council. 2018. MSC Fisheries Certification Process, Version 2.01. 31 August 2018.
- [MSC] Marine Stewardship Council. 2018. MSC Fisheries Standard, Version 2.01. 31 August 2018.
- [MSC] Marine Stewardship Council. 2014. MSC Fisheries Certification Requirements and Guidance, Version 2.0, 1st October, 2014.
- [MSC] Marine Stewardship Council. 2014. MSC Fisheries Standard and Guidance v2.0 (Extracted from Annexes SA, SB, SC and SD of the Fisheries Certification Requirements v2.0), Version 2.0, 1st October, 2014.
- [MSC] Marine Stewardship Council. 2010. Fisheries Assessment Methodology and Guidance to Certification Bodies, Including Default Assessment Tree and Risk-Based Framework, Version 2.1, 1st May, 2010.
- Nitiratsuwan T, Nitithamyong C, Chiayvareesajja S, Somboonsuke B. 2010. Distribution of blue swimming crab (*Portunus pelagicus* Linnaeus, 1758) in Trang Province. *Songklanakarin Journal of Science and Technology* 32 (3): 207-212.
- Parado-estepa FD, Quinitio ET, and Rodriguez E. 2007. Seed production of *Charybdis feriatus* (Linnaeus). *Aquaculture Research*, 38: 1452-1458. doi:10.1111/j.1365-2109.2007.01724.x.
- Patrick WS, Lawson P, Spencer P, Gedamke T, Link J, Cortés E, Cope J, Ormseth O, Field J, Bigelow K, Kobayashi D, Overholtz W. 2010. Using productivity and susceptibility indices to assess the vulnerability of United States fish stocks to overfishing.

- Sari IP, Zairion, and Wardiatno Y. 2019. Keragaman Sumberdaya Ikan Non Target Perikanan Rajungan di Pesisir Lampung Timur. *Jurnal Biologi Tropis* 19 (1) :8 – 13. DOI: <u>http://dx.doi.org/10.29303/jbt.v19i1.942</u>.
- Siahainenia L. 2008. Bioekologi kepiting bakau (*Scylla* spp.) di ekosistem mangrove Kabupaten Subang, Jawa Barat. PhD Dissertation. Graduate School of Bogor Agricultural University (IPB). 266p.
- Tan AN, Christianus A, Shakibazadeh S, and Hajeb P. 2012. Horseshoe Crab, *Tachypleus gigas* (Muller, 1785) Spawning Population at Balok Beach, Kuantan, Pahang, Malaysia. *Pakistan Journal of Biological Sciences* 15(13):610-620. DOI: 10.3923/pjbs.2012.610.620.
- Vijaya Bharathi T, Chakravarty MS, and Ganesh PRC. 2017. Sex ratio and reproductive performance of the female mud crab *Scylla serrata* (forskal) in Coringa mangroves, Andhra Pradesh, India. *Asian Journal of Science and Technology* 8 (9): 5529-5538.
- Webley JAC. 2008. The ecology of mud crab Scylla serrate: their colonization of estuaries and the role as scavengers in ecosystem processes. PhD thesis. Griffith University. 161p.
- Wijayanti ND, Fitriyah NL, Sari DR, Anwar S. 2018. Pengaruh kedalaman dan substrat dasar terhadap hasil tangkapan rajungan (*Portunus pelagicus*) di perairan Kabupaten Pamekasan. Laporan Penelitian. PS Ilmu Kelautan Universitas Trunojoyo.
- Zairion. 2015. Pengelolaan berkelanjutan perikanan rajungan (*Portunus pelagicus*) di Lampung Timur [Sustainable management of the blue swimming crab (*Portunus pelagicus*) fisheries in East Lampung]. PhD Dissertation. Graduate School of Bogor Agricultural University (IPB). 236p.
- Zairion, Wardiatno Y, and Fahrudin A. 2015a. Sexual Maturity, Reproductive Pattern and Spawning Female Population of the Blue Swimming Crab, *Portunus pelagicus* (Brachyura: Portunidae) in East Lampung Coastal Waters, Indonesia. *Indian Journal* of Science and Technology, 8(7): 596–607. DOI: 10.17485/ijst/2015/v8i6/69368.
- Zairion, Wardiatno Y, Boer M, and Fahrudin A. 2015b. Reproductive Biology of the Blue Swimming Crab *Portunus pelagicus* (Brachyura: Portunidae) in East Lampung Waters, Indonesia: Fecundity and Reproductive Potential. *Tropical Life Sciences Research*, 26(1), 67–85.
- Zaleha K, John BA, Atika HE, Kamaruzzaman BY, Jalal KCA. 2012. Spawning and Nesting Behaviour of *Tachypleus gigas* along the East Coast of Peninsular Malaysia. *Iternational Journal of Biology* 4(2): 102-111. doi:10.5539/ijb.v4n2p102.