Red Swimming Crab (*Monomia haani*) Fishery Improvement Project (FIP) in Zhangzhou City, Fujian Province, China

(August 2023-April 2024, Phase VII)

Prepared by Min Liu, Cai-lian Liu and Shi-yu Guan Fish Biology Laboratory College of Ocean and Earth Sciences, Xiamen University

June 2024

1. Introduction
2. Materials and Methods9
2.1 Survey periods for trawl vessels and trap vessels
2.2 Fishing vessel information collection10
2.3 Capture volume data collection11
2.4 Crab sampling
2.5 Feed fish sampling13
2.6 Species identification
2.7 Sample measurement
2.8 Crab sex determination14
3. Results
3.1 Number of trawl fishing vessels surveyed16
3.2 Species diversity from trawl and trap fishery16
3.2.1 Species composition16
3.2.2 Endangered, threatened and protected species
3.3 Fishing areas of trawl and trap vessels
3.4 Fishery operation patterns of trawl and trap vessels
3.5 Capture volumes and proportions by trawl vessels
3.5.1 Capture volumes and proportions of different taxonomic groups45
3.5.2 Crabs
3.5.3 Food fishes
3.5.4 Feed fishes
3.5.5 Average capture proportions from 2018 to 2024 (Phases I-VII)62
3.6 Capture volumes and proportions by trap vessels
3.6.1 Capture volumes and proportions of different taxonomic groups66
3.6.2 Crabs
3.6.3 Fishes
3.7 Biology of Monomia haani75

Contents

3.7.1 Size variation by month	75
3.7.2 Size variation by sex	77
3.7.3 Sex ratio	77
3.7.4 Spawning season	78
3.7.5 Spawning season from 2018 to 2024 (Phases I-VII)	79
3.7.6 Sizes for female maturity	79
3.7.7 Size-weight and size-size relationships	80
3.8 Biology of Portunus sanguinolentus	82
3.8.1 Size variation by month	82
3.8.2 Size variation by sex	84
3.8.3 Sex ratio	84
3.8.4 Spawning season	85
3.8.5 Spawning season from 2018 to 2024 (Phases I-VII)	86
3.8.6 Sizes for female maturity	86
3.8.7 Size-weight and size-size relationships	87
4. Significant findings	89
5. Acknowledgements	92
6. References	93

1. Introduction

The red swimming crab (*Monomia haani*, the Latin name used to be *Portunus haanii*) is one species of Family Portunidae and widely distributed in the Indo-Pacific. It is commonly found in the East and South China Seas (Dai et al., 1986). *M. haani* is characterized with a dark purple spot on the distal tips of the propodus of the fifth pereopod and the distal one-third of the dactylus of the fifth pereopod is colored dark purple (Windsor et al., 2019) (Fig. 1-1). *M. haani* lives in sandy and gravelly bottom within 100 m (Dai et al., 1986) and feeds on demersal fishes and crustaceans with Macrura and Brachyura species dominant (Huang, 2004).

Fig. 1-1. Red swimming crab Monomia haani.

The *M. haani* fishery has been important in Minnan fishing ground and Taiwan Bank fishing ground since the 1980s and has been one of the most productive crab species in Fujian Province crustacean fisheries since the 1990s, and it can be caught year-round (Zhang, 1997). Catches of *M. haani* mainly come from bottom trawlers, baited crab traps, and gill nets. The estimated annual capture volume of *M. haanii* was 30,000-35,000 t in Minnan-Taiwan Bank fishing grounds in the 1990s, and the capture volume of *M. haani* contributed to 16-23% of the total capture volume in bottom trawl fishery (Zhang, 1997), and 30,000-40,000 t in 2009-2018, contributing to 60-70% of the annual crab catch in Fujian Province (Ocean Outcomes, 2018; OFBFJ, 2010-2018). Based on the results of this project (in previous progress reports in 2018-2022), the monthly CPUE and average size of *M. haani* have shown declines compared to the results in the 1990s (Zhang, 1997).

Dongshan County (Zhangzhou City, Fujian Province) is the most important area for *M. haani* process industry, contributing to approximate 80% and 65% of Fujian total volume (20,646 t) and value (48.34 million US dollars), respectively. Export products from Dongshan County are mainly as canned lump crab meat, frozen crab body, and frozen raw claw meat. The processed products of *M. haani* exported from Fujian Province included about 20 countries and areas, and USA, Hong Kong, Taiwan and South Korea were the main export destinations (Chinese Customs Datasets, 2008-2018).

In an effort to ensure the sustainability of *M. haani* fishery and process industry, the China Aquatic Products Processing and Marketing Alliance (CAPPMA), its local affiliate, the Zhangzhou Aquatic Products Processing and Marketing Alliance (ZAPPMA), the US based National Fisheries Institute (NFI) and Ocean Outcomes (O2) have launched together the fishery improvement project (FIP) since 2018 in Dongshan County.

In August-December 2018, Ocean Outcomes (O2) launched Phase I of the FIP. The project focused on understanding the trawl and trap fisheries of *M. haani* and the biology of *M. haani* in Dongshan County. The information of the trawl and trap catch volumes, main species and species group catch volumes, and species composition on the landing ports in Dongshan County was collected. Biology of *M. haani* and other three main crab species (*Portunus sanguinolentus, Charybdis natator* and *Calappa philargius*) were examined. However, the trap vessel surveys in Dongshan County were not very successful because the low number of trap vessels surveyed at the landing ports. Another challenge was that the catches of trap vessels were mainly kept alive for higher price and traded at sea through the transfer vessels almost daily. Therefore, it was not possible to understand the total catch volume and species composition from the trap vessels.

In January-April 2019, Ocean Outcomes (O2) and Qingdao Marine Conservation Society (QMCS) launched Phase II of the FIP. The project still focused on the trawl and trap fisheries of *M. haani* in Dongshan County, with an extension to nearshore one-daytrip trap fishery in Longhai County of Zhangzhou City. The information of the trawl and trap catch volumes, main species and species group catch volumes, and species composition on the landing ports in Dongshan County was collected. Biology of *M. haani* and other three main crab species (*P. sanguinolentus*, *C. natator* and *C. philargius*) were examined. In Fujian Province, Longhai County was the location for the pilot project on total allowance catch (TAC) led by Fujian Province Fishery Research Institute. Briefly, the trap fishery surveys were challenging in Dongshan County because the trap catches were mainly sold alive at sea and *M. haani* was mainly steamly processed at sea before landing. Therefore, it was not possible to understand the total catch volume and species composition from the trap vessels.

In August-December 2019, Ocean Outcomes (O2) and Qingdao Marine Conservation Society (QMCS) launched Phase III of the FIP. The project continued our focus on the trawl and trap fisheries of *M. haani* in Dongshan County. Based the information collected in Phases I and II during the surveys and interviews, the trap fishery operation pattern in Dongshan County started to be clear. Trap vessel surveys for the *M. haani* fishery was finally completed for the first time in Dongshan County in Phase III. The catches from trap vessels were usually delivered by transfer vessels every 1-11 days (mean = 5.1, N = 51), so that the trap vessels could operate at sea longer (up to 30 days/trip).

In August-December 2020, Ocean Outcomes (O2) and Qingdao Marine Conservation Society (QMCS) launched Phase IV of the FIP with a gap in January-April 2020. The project still focused on the *M. haani* trawl fishery in Dongshan County. Moreover, we also paid attention on the domestic and international trade dynamics of *M. haani* in Dongshan County and Longhai County to evaluate the impacts of the trade war between China and USA, and the COVID-19 pandemic.

In January-April 2021, without financial support from Ocean Outcomes (O2) and Qingdao Marine Conservation Society (QMCS), the surveys on the *M. haani* trawl fishery in Dongshan County continued by Prof. Min Liu's lab in order to keep long term dataset available.

In October 2021-April 2022, Ocean Outcomes (O2) and Qingdao Marine Conservation Society (QMCS) launched Phase V of the FIP. The project continued the study on the trawl fishery of *M. haani* in Dongshan County. The information on catch volumes, main species and species group volumes, and species composition was collected. Biology of *M. haani* and *P. sanguinolentus* were examined again after the completion of Phases I-III. In addition, the logbook data collections from bottom trawlers were conducted, including the capture volumes of *M. haani*, sea horses and endangered species, and latitude and longitude data for the fishing grounds.

In August 2022-April 2023, Ocean Outcomes (O2) and Qingdao Marine Conservation Society (QMCS) launched Phase VI of the FIP. The project continued the focuses on the trawl fishery of *M. haani* in Dongshan County. The information on catch volumes, species composition, proportions of main economic species and "feed fishes" (See definition in Zhang & Liu, 2020) were collected. The biological study of two swimming crabs, *M. haani* and *P. sanguinolentus*, continued. The logbook data collection continued, including the capture volumes of *M. haani* and bycatch volumes of seahorses, with latitude and longitude recorded.

In August 2023-April 2024, Ocean Outcomes (O2) and Qingdao Marine Conservation Society (QMCS) launched Phase VII of the FIP. The project continued surveys on trawl fishery of *M. haani* in Dongshan County, and data on species composition, catch volumes and proportions of main economic species or species groups including crabs and "feed fishes" were collected. The biological study of *M. haani* and *P. sanguinolentus* continued. The logbook data of baited crab trap fishery were collected from three trap vessels for the first time in Dongshan County.

The specific objectives of Phase VII were assigned as follows:

(1) to document the species composition in catches from trawl fishery monthly at the landing ports, including those of the "feed fishes";

(2) to estimate the total catch volumes and proportions of main taxonomic groups (including crabs) and feed fishes from trawl fishery monthly;

(3) to collect information on species composition and their catch volumes from trap vessels through their logbook monthly to understand the trap fishery;

(4) to determine the size classes, sex ratio, number of females carrying eggs and spawning peaks for *M. haanii* and *P. sanguinolentus* based on the random samples collected from landing port monthly; and

(5) to identify the major and minor secondary species based on catch volumes of various species collected in 2019-2023 surveys.

2. Materials and Methods

2.1 Survey periods for trawl vessels and trap vessels

Trawl surveys were conducted at two major landing ports (Gongqian and Tongling) monthly in August 2023-April 2024 in Dongshan County, Zhangzhou City, Fujian Province (Table 2-1; Fig. 2-1).

Logbooks from three baited trap vessels (N = 3) from Tongling District were collected in October 2023-April 2024. It was the first time the logbook data were collected from trap vessels in Dongshan County. The catch volume records included both fresh and alive. Only alive trade bills in August and September 2023 were kept by captains; no fresh trade volumes were available. Therefore, the catches in August and September 2023 were not included for analyses. The operation days in August and September 2023 were available.

No.	Dates	Items
1	August 20 th -25 th , 2023	Trawler survey and crab sample collection
2	September 13 th -17 th ,2023	Trawler survey and crab sample collection
3	October 13 st -18 th , 2023	Trawler survey and crab sample collection
4	November 20 th -24 th , 2023	Trawler survey and crab sample collection
5	December 11 th -15 th , 2023	Trawler survey and crab sample collection
6	January 6 nd -11 th , 2024	Trawler survey and crab sample collection
7	February 20 th -24 th , 2024	Trawler survey and crab sample collection
8	March 15 th -19 th , 2024	Trawler survey and crab sample collection
9	April 8th-12th, 2024	Trawler survey and crab sample collection

Table 2-1. Landing port survey dates in Dongshan County.

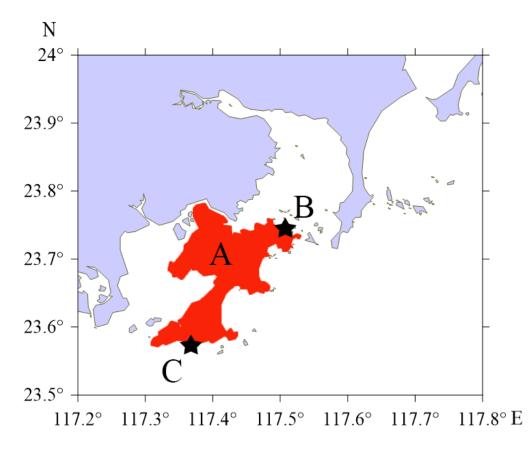


Fig. 2-1. Locations of the landing ports surveyed in Dongshan County (A).B: Tongling Landing Port; C: Gongqian Landing Port.

2.2 Fishing vessel information collection

In Dongshan County, about 650 trawl vessels and 65 trap vessels are registered currently based on the records from Fishery Society of Dongshan County. The information was used for further estimation on the total annual capture volumes in Dongshan County.

In August 2023-April 2024, at least 10 trawl vessels were surveyed each month at the landing ports of Dongshan County (Fig. 2-1). For each trawl vessel surveyed, information on vessel registration number (including the number labbled on the buskets holding the catches), fishing areas, number of days at sea, number of tows per day, and hours per tow were collected.

Logbooks from three baited trap vessels were collected from October 2023 to April 2024. For each trap vessel surveyed, information on GPS locations were collected

whenever possible. The information on the number of days per month at sea, the number of traps per line, the number of trap lines towed per day, the baited volumes used per month, and the number of crews per vessel were noted to understand the operation mode of trap vessels.

2.3 Capture volume data collection

For each trawl vessel surveyed above, information on the total capture volume, crab capture volume including *M. haani* and *P. sanguinolentus*, capture volume of main species or species groups, and capture volume of feed fishes were estimated at the landing ports based on observation, estimation and interview. The capture per unit effort (CPUE) of each vessel was calculated.

For each trap vessel surveyed (N = 3), the trade bills with species or species group and volume were collected (Fig. 2-3). The capture per unit effort (CPUE) of each trap vessel was also calculated.

111 负责人干机 金肉子说:

Fig. 2-3. Trade bills from the captains of trap vessels, both fresh (left) and alive (right) in Dongshan County.

2.4 Crab sampling

In Dongshan County, four crab species (*M. haani*, *P. sanguinolentus*, *Charybdis natator* and *Calappa philargius*) made up a great proportion of crab catches and were usually separated in catch landings in trawl fishery.

In August 2023-April 2024, *M. haani* and *P. sanguinolentus*, about one basket (about 20 kg) each species, were collected randomly and monthly for measurement and examination (Table 2-2) during trawl vessels surveys. Baskets are the uniform containers used to hold catches by local fishermen on board in Dongshan County. Small *M. haani* and *P. sanguinolentus* individuals were also mixed in feed fish samples; their size and sex data were also integrated into biological analyses for *M. haani* and *P. sanguinolentus*.

No.	Photo	Species name
1		Red swimming carb Monomia haani
2		Three-spot swimming crab Portunus sanguinolentus

Table 2-2. Two crab species sampled.

2.5 Feed fish sampling

At least 1 kg feed fishes were randomly collected monthly in August 2023-April 2024 from the trawl vessels surveyed for further species identification and size measurement.

2.6 Species identification

To understand the species diversity of trawl fishery catches in Dongshan County, common and commercially important species of fishes, crustacean and cephalopods were noted and photos were taken at the landing ports for taxonomic identification. If necessary, specimens were collected for further identification in the laboratory. For feed fishes, species were identified to species, genus or family levels in laboratory in terms of the size and reserve condition of the specimens.

Fish classification and identification was based on *Fishes of The World* (Nelson 2006), *Marine Fishes of Southern Fujian, China (Volume 1)* (Liu et al., 2013), *Marine Fishes of Southern Fujian, China (Volume 2)* (Liu et al., 2014), www.fishbase.org, and fishdb.sinica.edu.tw. In addition, DNA barcoding technique was applied for species identification if necessary.

Crustacean identification was based on *Marine Crabs of China* (Dai et al., 1986), *A Catalog of the Mantis Shrimps (Stomatopoda) of Taiwan* (Ahyong et al., 2008), and *Penaeidae Shrimps of the South China Sea* (Liu et al., 1988).

Cephalopod identification was based on Fauna Sinica Vol. 4: Phylum Mollusca Class Cephalopode (Dong, 1988), and Cuttlefished and Squids of the World [New Edition] (Takashi, 2015).

2.7 Sample measurement

For *M. haani* and *P. sanguinolentus*, the carapace size (cm) and body weight (BW, g) were measured individually in the laboratory. The carapace width (CW) was the straight-line distance between the two tips of the most lateral carapace spines, while the carapace length (CL) was the straight midline between the frontal notch and the

posterior margin of the carapace (Fig. 2-4).

Fig. 2-4. Crab size measurement. CL: carapace length; CW: carapace width.

2.8 Crab sex determination

Crab sex was determined based on the morphology of abdomen (Fig. 2-5). The spawning season of crabs is determined by the high proportions of the female bearing eggs by month (Fig. 2-6). Gonads develop within the carapaces of female and male crabs. When ovaries mature, the eggs are released and attached to the belly of the females. The eggs are fertilized and develop until the larvae are released into the sea.

Fig. 2-5. Sex determination for crabs.

Fig. 2-6. A female crab bearing eggs.

3. Results

3.1 Number of trawl fishing vessels surveyed

A total of 107 trawl fishing vessels were surveyed at the landing ports of Dongshan County in August 2023-April 2024 (Table 3-1).

Table 3-1. Number of trawl fishing vessels surveyed in August 2023-April 2024 at the

Month	Number of vessels surveyed
August 2023	11
September 2023	13
October 2023	10
November 2023	12
December 2023	12
January 2024	12
February 2024	12
March 2024	14
April 2024	11
Total	107

landing ports of Dongshan County.

3.2 Species diversity from trawl and trap fishery

3.2.1 Species composition

A total of 505 species (at species, genus or family level) were identified from trawl fishery catches from August 2018 to April 2024 (in Phases I-VII), including 393 fishes (77.8%), 89 crustaceans (17.6%) and 23 cephalopods (4.6%) (Table 3-2). Fishes came from 23 orders and 107 families, with almost half of the species from the order Perciformes. Crustaceans came from 2 orders and 23 families, and cephalopods came from 3 orders and 4 families. Among 505 species, 76 species were found in both food and feed fishes, including 56 fishes, 11 crustaceans and 9 cephalopods; 181 species were only found in feed fishes, including 123 fishes, 52 crustaceans and 6 cephalopods.

Table 3-2. Species recorded (N = 505) in trawl fishery in August 2018-April 2024 (Phase I-VII) at landing ports of Dongshan County.

(#: species found in both food and feed fish samples; *: species only found in feed fish samples; CR, critically endangered; EN, endangered; VU,

Order	Family	No. of species	Common name	Species name	IUCN threatened category		
			Fish (N = 393)		·		
Orectolobiformes	Rhinocodontidae	1	Whale shark	Rhincodon typus	EN		
	Hemiscylliidae	2	Whitespotted bambooshark	Chilsoscyllium plagiosum	NT		
Carcharhiniformes	Lamnidae	3	Great white shark	Carcharodon carcharias	VU		
	Carcharhinidae	4	Pacific spadenose shark	Scoliodon macrorhynchos	NT		
		5	Cocktail shark	Carcharhinus brevipinna	VU		
			6	Hardnose shark	Carcharhinus macloti	NT	
			7	Blacktip reef shark	Carcharhinus melanopterus	VU	
				8	Bull shark	Carcharhinus leucas	VU
			9	Blacktip shark	Carcharhinus limbatus	VU	
		10	Spot-tail shark	Carcharhinus sorrah	NT		
		11	Tiger shark	Galeocerdo cuvier	NT		
	Shpyrnidae	12	Scalloped hammerhead	Sphyrna lewini	CR		
	Scyliorhinidae	13	Blotchy swell shark	*Cephaloscyllium umbratile	NT		
		14	Blackspotted catshark	Halaelurus buergeri	EN		
	Triakidae	15	Spotless smooth-hound	Mustelus griseus	EN		
Torpediniformes	Narcinidae	16	Chinese numbfish	Narcine lingula	VU		

vulnerable; NT, near threatened; LC, least concern; NE, not evaluated; DD, data deficient)

		17	Shortlip electric ray	Narcine maculata	VU
Rajiformes	Rhynchobatidae	18	Taiwanese wedgefish	Rhynchobatus immaculatus	CR
		19	Bottlenose wedgefish	Rhynchobatus australiae	CR
	Rhinobatidae	20	Angel fish	Rhinobatos hynnicephalus	EN
		21	Brown guitarfish	Rhinobatos schlegelii	CR
		22	Smalleyed guitarfish	Rhinobatos microphthalmus	NE
	Rajidae	23	Boeseman's skate	Okamejei boesemani	VU
Myliobatiformes	Platyrhinidae	24	Yellow-spotted fanray	#Platyrhina tangi	VU
		25	Chinese fanray	Platyrhina sinensis	EN
	Dasyatidae	26	Honeycomb stingray	Himantura uarnak	EN
		27	Stingray	Maculabatis macrura	EN
		28	Sepia stingray	Urolophus aurantiacus	VU
		29	Red stingray	Dasyatis akajei	NT
		30	Pale-edged stingray	Telatrygon zugei	VU
		31	Blue-spotted stingray	Neotrygon kuhlii	DD
		32	Round ribbontail ray	Taeniurops meyeni	VU
		33	Japanese butterflyray	Gymnura japonica	VU
	Myliobatidae	34	Longheaded eagle ray	Aetobatus flagellum	EN
		35	Whitespotted eagle ray	Aetobatus narinari	EN
	Mobulidae	36	Chilean devil ray	Mobula tarapacana	EN
Anguilliformes	Muraenidae	37	Netted moray	#Gymnothrax reticularis	LC
		38	Sieve-patterned moray	Gymnothorax cribroris	LC
		39	Reeves's moray	Gymnothorax reevesii	LC
		40	Laced moray	Gymnothorax favagineus	LC

	41	Snowflake-patched moray	Gymnothorax niphostigmus	LC
	42	Liver-colored moray eel	Gymnothorax hepaticus	LC
	43	Yellow-edged moray	Gymnothorax flavimarginatus	LC
	44	Whitemargin moray	Gymnothorax albimarginatus	LC
	45	Australian mottled moray	Gymnothorax prionodon	LC
	46	Moray	Gymnothorax sp.	
	47	Slender giant moray	Strophidon sathete	LC
	48	Moray	Strophidon sp.	
Ophichthidae	49	Finny snake eel	*Caecula pterygera	DD
	50	Longtailed sand-eel	*Bascanichthys kirki	LC
	51	Snake eel	*Ophichthus urolophus	LC
	52	Sharpsnout snake eel	*Apterichtus klazingai	LC
	53	Longfin snake-eel	#Pisodonophis cancrivorus	LC
	54	Rice-paddy eel	#Pisodonophis boro	LC
	55	Black ridge-fin eel	#Callechelys kuro	DD
	56	Chinese eel	*Cirrhimuraena chinensis	LC
	57	Snake eel	Xyrias chioui	DD
	58	Orange blotched eel	*Apterichtus hatookai	DD
	59	Stargazer snake eel	Brachysomophis cirrocheilos	LC
	60	Vulture sand eel	*Ichthyapus vulturis	LC
	61	Snake eel	*Ophichthidae sp.	
Muraenesocidae	62	Daggertooth pike conger	#Muraenesox cinereus	LC
	63	Shorttail pike conger	#Oxyconger leptognathus	LC
Congridae	64	Conger	Gnathophis heterognathos	LC

		65	Conger	*Gnathophis nystromi	NE
		66	Eel	#Ariosoma meeki	LC
		67	Eel	*Ariosoma megalops	
		68	Eel	#Ariosoma sp.	
		69	Slender conger	#Uroconger lepturus	LC
		70	Beach conger	Conger japonicus	NE
		71	Whitespotted conger	Conger myriaster	LC
		72	Eel	*Congridae sp.	
	Nettastomatidae	73	Duckbill eel	*Saurenchelys fierasfer	LC
Clupeiformes	Clupeidae	74	Round sardinella	*Sardinella aurita	LC
		75	Bali sardinella	Sardinella lemuru	NT
		76	Japanese sardinella	Sardinella zunasi	LC
		77	Bloch's gizzard shad	Nematalosa nasus	LC
	Engraulidae	78	Commerson's anchovy	*Stolephorus commersonnii	LC
		79	Japanese anchovy	*Engraulis japonicus	LC
		80	Kammal thryssa	*Thryssa kammalensis	DD
		81	Moustached thryssa	Thryssa mystax	LC
		82	Orangemouth anchovy	Thryssa vitrirostris	LC
		83	Hamilton's thryssa	Thryssa hamiltonii	LC
		84	Dussumier's thryssa	*Thryssa dussumieri	LC
		85	Common hairfin anchovy	*Setipinna tenuifilis	DD
	Prisigasteridae	86	Elongate ilisha	Ilisha elongata	LC
		87	Buccaneer anchovy	*Encrasicholina punctifer	LC
Gonorhynchiformes	Gonoruchidae	88	beaked salmon	*Gonorynchus abbreviatus	NE

Siluriformes	Plotosidae	89	Striped eel catfish	Plotosus lineatus	NE
	Ariidae	90	Threadfin sea catfish	Arius arius	LC
		91	Spotted catfish	Arius maculatus	NE
Aulopiformes	Synodontidae	92	Snakefish	#Trachinocephalus myops	LC
		93	Lizardfish	#Synodus fuscus	LC
		94	Taiwan lizardfish	*Synodus taiwanensis	NE
		95	Blackear lizardfish	*Synodus hoshinonis	LC
		96	Lizardfish	*Synodus sp.	
		97	Bombay-duck	Harpadon nehereus	NT
		98	Slender lizardfish	#Saurida elongata	LC
		99	Greater lizardfish	#Saurida tumbil	LC
		100	Brushtooth lizardfish	#Saurida undosquamis	LC
Myctophiformes	Myctophidae	101	Skinnycheek lanternfish	* Benthosema pterotum	LC
Lophiiformes	Lophiidae	102	Blackmouth angler	Lophiomus setigerus	LC
	Antennariidae	103	Striated frogfish	*Antennarius striatus	LC
Gadiformes	Bregmacerotidae	104	False lance codlet	*Bregmaceros pseudolanceolatus	NE
		105	Codlet	*Bregmaceros sp.	
Ophidiiformes	Ophidiidae	106	Asiro brotula	*Ophidion muraenolepis	LC
		107	Yellow pigmy brotula	*Dinematichthys iluocoeteoides	LC
		108	Goatsbeard brotula	Brotula multibarbata	LC
Mugiliformes	Mugilidae	109	Mullet	Planiliza affinis	NE
		110	Flathead grey mullet	Mugil cephalus	LC
		111	Fringelip mullet	*Crenimugil crenilabis	LC
		112	Longarm mullet	Moolgarda cunnesius	NE

		113	Mullet	*Mugilidae sp.	
Beloniformes	Hemiramphidae	114	Garfish	Hyporhamphus sp.	
	Monocentridae	115	Pineconefish	Monocentris japonica	LC
Beryciformes	Holocentridae	116	Redcoat	*Sargocentron rubrum	LC
Zeiformes	Zeidae	117	Cape dory	*Zeus capensis	LC
Syngnathiformes	Syngnathidae	118	Longnose seahorse	#Hippocampus trimaculatus	VU
		119	Great seahorse	Hippocampus kelloggi	VU
		120	Japanese seahorse	Hippocampus mohnikei	VU
		121	Hedgehog seahorse	Hippocampus spinosissimus	VU
		122	Rough pipefish	#Trachyrhamphus serratus	DD
		123	Gray's pipefish	Halicampus grayi	LC
		124	Hardwicke's pipefish	Solegnathus hardwickii	DD
		125	Pipefish	Syngnathidae sp.	
	Pegasidae	126	Sea moth	*Pegasus laternarius	DD
	Fistularidae	127	Red cornetfish	#Fistularia petimba	LC
		128	Bluespotted cornetfish	Fistularia commersonii	LC
Scorpaeniformes	Scorpaenidae	129	Lionfish	Pterois volitans	LC
		130	Turkeyfish	Pterois paucispinula	LC
		131	Ocellated waspfish	*Apistus carinatus	LC
		132	Butterfly scorpionfish	Dendrochirus bellus	LC
		133	Blackfoot Lionfish	Parapterois heterura	LC
		134	False kelpfish	#Sebastiscus marmoratus	NE
		135	Yellowfin scorpionfish	Scorpaenopsis neglecta	LC
		136	Flasher scorpionfish	Scorpaenopsis macrochir	LC

		137	Weedy stingfish	Scorpaenopsis cirrosa	NE
		138	Scorpionfish	#Scorpaena miostoma	NE
		139	Korean rockfish	Sebastes schlegelii	NE
		140	Dwarf stingfish	*Minous pusillus	NE
		141	Grey stingfish	*Minous monodactylus	LC
	Aploactinidae	142	Dusky velvetfish	*Aploactis aspera	NE
	Triglidae	143	Oriental flying gurnard	Dactyloptena orientalis	LC
		144	Spiny red gurnard	#Chelidonichthys spinosus	LC
		145	Redwing searobin	*Lepidotrigla microptera	NE
		146	Forksnout searobin	*Lepidotrigla alata	NE
		147	Searobin	*Lepidotrigla japonica	NE
	Platycephalidae	148	Midget flathead	*Onigocia spinosa	LC
		149	Rough flathead	Grammoplites scaber	NE
		150	Tuberculated flathead	*Sorsogona tuberculata	LC
		151	Bartail flathead	Platycephalus indicus	DD
		152	Olive-tailed flathead	*Rogadius asper	LC
		153	Celebes flathead	*Thysanophrys celebica	LC
		154	Large-spined flathead	*Suggrundus macracanthus	LC
		155	Japanese flathead	*Inegocia japonica	LC
		156	Spotted flathead	*Inegocia guttata	NE
		157	Crocodile flathead	Cociella crocodila	LC
		158	Flathead	*Platycephalidae sp.	
Perciformes	Moronidae	159	Japanese seabass	Lateolabrax japonicus	NE
	Serranidae	160	Barred soapfish	Diploprion bifasciatum	LC

	Acropomatidae	161	Glowbelly	*Acropoma japonicum	NE
	Epinephelidae	162	Orange-spotted grouper	Epinephelus coioides	LC
		163	Yellow grouper	Epinephelus awoara	DD
		164	Duskytail grouper	Epinephelus bleekeri	DD
		165	Longfin grouper	Epinephelus quoyanus	LC
		166	Hong Kong grouper	Epinephelus akaara	EN
		167	Areolate grouper	Epinephelus areolatus	LC
		168	Longtooth grouper	Epinephelus bruneus	VU
		169	Striped grouper	Epinephelus latifasciatus	LC
		170	Chocolate hind	Cephalopholis boenak	LC
		171	Tomato hind	Cephalopholis sonnerati	LC
		172	Oval grouper	Triso dermopterus	LC
	Pricanthidae	173	Red bigeye	#Priacanthus macracanthus	LC
		174	Purple-spotted bigeye	#Priacanthus tayenus	LC
		175	Japanese bigeye	Pristigenys niphonia	LC
	Apogonidae	176	Rifle cardinal	*Ostorhinchus kiensis	LC
		177	Half-lined cardinal	*Ostorhinchus semilineatus	DD
		178	Broadbanded cardinalfish	#Ostorhinchus fasciatus	NE
		179	Cardinalfish	*Apogonichthyoides niger	LC
		180	Cardinalfish	*Apogonichthyoides cathetogramma	LC
		181	Flagfin cardinalfish	*Jaydia truncata	NE
		182	Indian perch	*Jaydia lineata	LC
		183	Ocellate cardinalfish	*Jaydia carinatus	
	Sillaginidae	184	Japanese sillago	Sillago japonica	LC

	185	Bay sillago	#Sillago ingenuua	NE
Coryphaenio	lae 186	Common dolphinfish	Coryphaena hippurus	LC
Rachycentri	lae 187	Cobia	Rachycentron canadum	LC
Echeneidae	188	Shark sucker	Remora remora	LC
Carangidae	189	African pompano	Alectis ciliaris	LC
	190	Bigeye scad	Selar crmenophthalmus	LC
	191	Torpedo scad	Megalaspis cordyla	LC
	192	Yellowstripe scad	#Selaroides leptolepis	LC
	193	Black pomfret	Parastromateus niger	LC
	194	Whitefin trevally	*Carangoides equula	LC
	195	Razorbelly scad	Alepes kleinii	LC
	196	Japanese scad	#Decapterus maruadsi	LC
	197	Shortfin scad	Decapterus macrosoma	LC
	198	Japanese jack mackerel	#Trachurus japonicus	NT
	199	Snubnose pompano	Trachinotus blochii	LC
	200	Needlescaled queenfish	Scomberoides tol	LC
	201	Yellowtail amberjack	Seriola dumerili	LC
	202	Yellowtail amberjack	Seriola aureovittata	LC
	203	Blackbanded trevally	Seriolina nigrofasciata	LC
Menidae	204	Moonfish	Mene maculata	NE
Leiognathid	ae 205	Deep pugnose ponyfish	*Secutor ruconius	NE
	206	Ponyfish	*Equulites rivulatus	NE
	207	Scrawled ponyfish	*Leiognathus berbis	NE
	208	Orangefin ponyfish	*Photopectoralis bindus	NE

Lutjanidae	209	Crimson snapper	Lutjanus erythopterus	LC
	210	Russell's snapper	Lutjanus russellii	LC
	211	Mangrove red snapper	Lutjanus argentimaculatus	LC
	212	Brownstripe red snapper	Lutjanus vitta	LC
	213	Spotstripe snapper	Lutjanus ophuysenii	NE
Gerreidae	214	Whipfin silver-biddy	Gerres filamentosus	LC
	215	Longspine silverbiddy	Gerres macracanthus	NE
Haemulidae	216	Broadbanded velvetchin	Hapalogenys analis	NE
	217	Black grunt	Hapalogenys nigripinnis	NE
	218	Trout sweetlips	Plectorhinchus pictus	LC
	219	Crescent sweetlips	Plectorhinchus cinctus	LC
	220	Chicken grunt	Parapristipoma trilineatum	NE
Nemipteridae	221	Whitecheek monocle bream	*Scolopsis vosmeri	LC
	222	Unarmed dwarf monocle bream	Parascolopsis inermis	LC
	223	Golden threadfin bream	Nemipterus virgatus	VU
	224	Yellowbelly threadfin bream	*Nemipterus bathybius	LC
	225	Japanese threadfin bream	#Nemipterus japonicus	LC
Lethrinidae	226	Pacific yellowtail emperor	Lethrinus atkinsoni	LC
	227	Spangled emperor	Lethrinus nebulosus	LC
Sparidae	228	Yellowfin seabream	Acanthopagrus latus	DD
	229	Blackhead seabream	Acaanthopagrus schelegeli	LC
	230	Red seabream	Pagrus major	LC
	231	Goldlined seabream	Rhabdosargus sarba	LC
	232	Threadfin porgy	#Evynnis cardinalis	EN

Polynemidae	233	Fourfinger threadfin	Eleutheronema tetradactylum	NE
	234	Sixfinger threadfin	#Polydactylus sextarius	NE
Sciaenidae	235	Reeve's croaker	Chrysochir aureus	LC
	236	Blackspotted croaker	Protonibea diacanthus	NT
	237	Croaker	*Johnius distinctus	LC
	238	Trewavas croaker	#Johnius trewavasae	LC
	239	Croaker	Johnius taiwanensis	LC
	240	Belanger's croaker	Johnius belangerii	LC
	241	Croaker	*Johnius sp.1	
	242	Croaker	*Johnius sp.2	
	243	Large yellow croaker	Larimichthys crocea	CR
	244	Yellow drum	Nibea albiflora	LC
	245	Big-head pennah croaker	#Pennahia macrocephalus	LC
	246	Truncate-tail croaker	#Pennahia anea	LC
	247	Silver croaker	#Pennahia argentata	LC
	248	Pawak croaker	*Pennahia pawak	LC
	249	Japanese meagre	Argyrosomus japonicus	EN
	250	Mi-iuy croaker	Miichthys miiuy	DD
	251	Croaker	*Sciaenidae sp.	
Glaucosomatidae	252	West Australian dhufish	Glaucosoma hebraicum	NE
Mullidae	253	Japanese goatfish	#Upeneus japonicus	NE
	254	Pointed goatfish	Parupeneus biaculeatus	NE
	255	Whitesaddle goatfish	Parupeneus ciliatus	LC
	256	Blackspot goatfish	Parupeneus spilurus	LC

		257	Yellow striped goatfish	Parupeneus chrysopleuron	LC
		258	Yellowstripe goatfish	Mulloidichthys flavolineatus	LC
	Kyphosidae	259	Stripey	Microcanthus strigatus	LC
	Drepaneidae	260	Spotted sicklefish	*Drepane punctata	LC
-	Terapontidae	261	Jarbua terapon	*Terapon jarbua	LC
		262	Fourlined terapon	*Pelates quadrilineatus	NE
-	Oplegnathidae	263	Spotted knifejaw	*Oplegnathus punctatus	NE
-	Chaetodontidae	264	Goldengirdled coralfish	Coradion chrysozonus	LC
		265	Triple-banded butterflyfish	#Roa modestus	LC
		266	Pennant coralfish	Heniochus acuminatus	LC
-	Pomacanthidae	267	Bluestriped angelfish	Chaetodontoplus septentrionalis	LC
-	Oplegnathidae	268	Barred knifejaw	Oplegnathus fasciatus	NE
-	Pomacentridae	269	Jordan's damsel	#Teixeirichthys jordani	LC
		270	Bengal sergeant	Abudefduf bengalensis	LC
		271	Ternate chromis	*Chromis ternatensis	LC
		272	Damselfish	*Pomacentrus sp.1	
		273	Damselfish	*Pomacentrus sp.2	
-	Cepolidae	274	Bandfish	Acanthocepola indica	NE
-	Labridae	275	Scarbreast tuskfin	Choerodon azurio	DD
		276	Multicolorfin rainbowfish	Parajulis poecilepterus	LC
		277	Slender wrasse	*Suezichthys gracilis	LC
		278	Rosed razorfish	Iniistius verrens	LC
		279	Blackspot razorfish	Iniistius dea	LC
		280	Redblotch razorfish	Xyrichtys twistii	LC

	281	Masuda's hogfish	Bodianus masudai	LC
	282	Blackstripe wrasse	Coris musume	LC
	283	Red naped wrasse	Pseudolabrus eoethinus	LC
Scaridae	284	Blue-barred parrotfish	Scarus ghobban	LC
Champsodontidae	285	Günther's gaper	*Champsodon guentheri	NE
Pinguipedidae	286	Harlequin sandsmelt	#Parapercis pulchella	LC
	287	Sandperch	*Parapercis ommatura	NE
	288	Grub fish	Parapercis sexfasciata	NE
Callionymidae	289	Dragonet	#Callionymus huguenini	NE
	290	Japanese longtail dragonet	Calliurichthys japonicus	LC
	291	Japanese filamentous dragonet	Callionymus doryssus	NE
	292	Dragonet	#Callionymus planus	NE
	293	Horn dragonet	*Callionymus curvicornis	NE
	294	Izu ruddertail dragonet	Callionymus curvispinis	NE
	295	Dragonet	*Callionymus sp.	
	296	Izu dragonet	Calliurichthys izuensis	NE
	297	Kai Island deepwater dragonet	Bathycallionymus kaianus	NE
Percophidae	298	Duckbill	Acanthaphritis barbata	NE
	299	Duckbill	*Percophidae sp.	
Trichonotidae	300	Black-spot sand-diver	#Trichonotus filamentosus	LC
	301	Spotted sand-diver	#Trichonotus setiger	LC
Ammodytidae	302	Sand lance	#Bleekeria viridianguilla	NE
	303	Sand lance	#Bleekria mitsukurii	NE
Uranoscopidae	304	Naked-nape stargazer	Uranoscopus oligolepis	LC

	305	Chinese stargazer	*Uranoscopus bicinctus	NE
	306	Japanese stargazer	#Uranoscopus japonicus	LC
	307	Chinese stargazer	*Uranoscopus chinensis	NE
	308	Longnosed stargazer	*Ichthyscopus lebeck	NE
	309	Oriental fringe stargazer	*Ichthyscopus pollicaris	NE
Gobiidae	310	Burrowing goby	Trypauchen vagina	LC
	311	Maned goby	*Oxyurichthys microlepis	LC
	312	Pinkgray goby	*Amblychaeturichthys hexanema	NE
	313	Goby	*Gobiidae sp.1	
	314	Goby	*Gobiidae sp.2	
Eleotridae	315	Ward's sleeper	*Valenciennea wardi	LC
	316	Immaculate glidergoby	*Valenciennea immaculata	LC
Ptereleotridae	317	Blue hana goby	*Ptereleotris hanae	LC
Ephippidae	318	Longfin batfish	Platax teria	LC
Siganidae	319	Mottled spinefoot	#Siganus fuscescens	LC
Sphyraenidae	320	Seapike	Sphyraena jello	NE
	321	Red barracuda	Sphyraena pinguis	NE
	322	Yellowtail barracuda	Sphyraena flavicauda	NE
	323	Japanese barracuda	Sphyraena japonica	NE
	324	Seapike	<i>Sphyraena</i> sp.	
Acanthuridae	325	Scalpel sawtail	Prionurus scalprum	DD
Trichiuridae	326	Largehead hairtail	#Trichiurus lepturus	LC
	327	Japanese hairtail	*Trichiurus japonicus	NE
	328	Chinese short-tailed hairtail	*Trichiurus brevis	NE

		329	Hairtail	*Trichiurus sp.	
	Scombridae	330	Chub mackerel	#Scomber japonicus	LC
		331	Japanese Spanish mackerel	Scomberomorus niphonius	DD
		332	Narrow-barred Spanish mackerel	Scomberomorus commerson	NT
		333	Indo-Pacific king mackerel	Scomberomorus guttatus	DD
		334	Bullet mackerel	Auxis thazard	LC
		335	Bonito	Euthynnus affinis	LC
		336	Striped bonito	Sarda orientalis	LC
	Istiophorus	337	Indo-Pacific sailfish	Istiophorus platypterus	NE
	Centrolophidae	338	Pacific rudderfish	#Psenopsis anomala	LC
	Stromateidae	339	Butterflyfish	Pampus argenteus	NE
		340	Chinese silver pomfret	Pampus chinensis	NE
Pleuronectiformes	Paralichthyidae	341	Cinnamon flounder	Pseudorhombus cinnamoneus	LC
		342	Largetooth flounder	Pseudorhombus arsius	NE
		343	Taiwan-ganzôbirame	Pseudorhombus levisquamis	LC
		344	Roughscale flounder	Pseudorhombus oligodon	LC
		345	Large-tooth flounder	*Tarphops oligolepis	LC
		346	Bastard halibut	Paralichthys olivaceus	NE
	Bothidae	347	Lefteye flounder	*Psettina tosana	LC
		348	Flounder	*Psettina sp.	
		349	Largescale flounder	*Engyprosopon grandisquama	LC
		350	Lefteye flounder	*Engyprosopon maldivensis	DD
		351	Lefteye flounder	*Engyprosopon multisquama	LC
		352	Largescale dwarf flounder	*Engyprosopon macrolepis	LC

	353	Blue flounder	*Crossorhombus azureus	LC
	354	Flounder	*Crossorhombus sp.	
	355	Indo-Pacific oval flounder	*Bothus myriaster	LC
	356	Many-spotted lefteye flounder	*Arnoglossus polyspilus	LC
	357	Large-crested lefteye flounder	*Arnoglossus macrolophus	LC
	358	Dwarf lefteye flounder	*Arnoglossus tenuis	LC
	359	Lefteye flounder	*Arnoglossus sp.	
	360	Flounder	*Bothidae sp.	
Pleuronectidae	361	Ridged-eye flounder	#Pleurinichthys cornutus	NE
Samaridae	362	Crested flounder	*Samaris cristatus	LC
Soleidae	363	Ovate sole	*Solea ovata	LC
	364	Unicorn sole	Aesopia cornuta	LC
	365	Zebra sole	Zebrias zebra	NE
	366	Flounder	*Zebrias crossolepis	DD
	367	Wavyband sole	*Pseudaesopia japonica	LC
	368	Flounder	*Soleidae sp.	
	369	Blackspotted sole	#Liachirus melanospilos	LC
Cynoglossidae	370	Red tonguesole	*Cynoglossus joyneri	NE
	371	Speckled tougue sole	*Cynoglossus puncticeps	LC
	372	Speckled tongue sole	*Cynoglossus itinus	LC
	373	Genko sole	*Cynoglossus interruptus	LC
	374	Three-lined tongue sole	Cynoglossus abbreviatus	DD
	375	Tongue sole	*Cynoglossus oligolepis	DD
	376	Tongue sole	*Cynoglossus sp.	

		377	Black cow-tongue	Paraplagusia japonica	LC
Tetraodontiformes	Monacanthidae	378	Unicorn leatherjacket filefish	Aluterus monoceros	LC
		379	Threadsail filefish	#Stephanolepis cirrhifer	LC
		380	Mudbank filefish	#Paramonacanthus sulcatus	LC
		381	Faintstripe filefish	#Paramonacanthus pusillus	LC
		382	Prickly leatherjacket	Chaetodermis peniciligera	LC
	Tetraodontidae	383	Blowfish	#Lagocephalus wheeleri	NE
		384	Smooth blaasop	Lagocephalus inermis	LC
		385	Lattice blaasop	Takifugu oblongus	LC
		386	Pufferfish	Takifugu poecilonotus	LC
		387	Yellowfin puffer	Takifugu xanthopterus	LC
		388	Guineafowl puffer	Arothron meleagris	LC
		389	Stellate puffer	Arothron stellatus	LC
		390	Puffer	Torquigener pallimaculatus	LC
	Diodontidae	391	Longspined porcupinefish	Diodon holocanthus	LC
	Balistidae	392	Starry triggerfish	Abalistes stellaris	LC
		393	Masked triggerfish	Sufflamen fraenatum	LC
			Crustacean ($N = 89$)		
Stomatopoda	Squillidae	394	Japanese squillid mantis shrimp	*Oratosquilla fabricii	NE
	-	395	Mantis shrimp	*Oratosquilla kempi	NE
		396	Mantis shrimp	*Lophosquilla costata	NE
		397	Mantis shrimp	<i>*Lophosquilla</i> sp.	
		398	Robber harpiosquillid mantis shrimp	Harpiosquilla harpax	NE

		399	Smooth squillid mantis shrimp	*Erugosquilla woodmasoni	NE
		400	Mantis shrimp	*Carinosquilla multicarinata	NE
		401	Mantis shrimp	*Oratosquillina interrupta	NE
		402	Mantis shrimp	#Odontodactylus japonicus	NE
Decapoda	Sicyoniidae	403	Shrimp	*Sicyonia japonica	NE
		404	Shrimp	*Sicyonia cristata	NE
		405	Shrimp	*Sicyonia sp.	
	Palaemonidae	406	Shrimp	*Palaemonidae sp.	
	Solenoceridae	407	Udang merah	#Solenocera crassicornis	NE
	Penaeidae	408	Kuruma shrimp	Penaeus japonicus	NE
		409	Chinese white prawn	Penaeus merguiensis	NE
		410	Western king prawn	Penaeus latisulcatus	NE
		411	Green tiger prawn	Penaeus semisulcatus	NE
		412	Witch prawn	Penaeus canaliculatus	NE
		413	Redspot king prawn	Penaeus longistylus	NE
		414	Giant tiger prawn	Penaeus monodon	NE
		415	Periscope shrimp	*Atypopenaeus stenodactylus	NE
		416	Southern rough shrimp	#Trachysalambria curvirostris	NE
		417	Rough shrimp	*Trachysalambria longipes	NE
		418	Spear shrimp	#Parapenaeopsis hardwickii	NE
		419	Coral shrimp	#Kishinouyepenaeopsis cornuta	NE
		420	Shrimp	*Mierspenaeopsis cultrirostris	NE
		421	Smoothshell shrimp	*Batepenaeopsis tenella	NE
		422	Flamingo shrimp	*Parapenaeus longipes	NE

	423	Whiskered velvet shrimp	#Metapenaeopsis barbata	NE
	424	Kishi velvet shrimp	*Metapenaeopsis dalei	NE
	425	Humpback prawn	Metapenaeopsis lamellata	NE
	426	Southern velvet shrimp	*Metapenaeopsis palmensis	NE
	427	Mogi velvet shrimp	*Metapenaeopsis mogiensis	NE
	428	Velvet shrimp	*Metapenaeopsis sp.1	
	429	Velvet shrimp	*Metapenaeopsis sp.2	
	430	Shrimp	*Penaeidae sp.1	
	431	Shrimp	*Penaeidae sp.2	
Pasiphaeidae	432	Lesser glass shrimp	*Leptochela gracilis	NE
Thoridae	433	Shrimp	*Birulia kishinouyei	NE
Scyllaridae	434	Slipper lobster	*Scyllarus cultrifer	LC
Palinura	435	Chinese spiny lobster	Panulirus stimpsoni	DD
	436	Ornate spiny lobster	Panulirus ornatus	LC
	437	Smooth fan lobster	Ibacus novemdentatus	LC
Albuneidae	438	Sand crab	* <i>Albunea</i> sp.	
Raninidae	439	Red frog crab	Ranina ranina	NE
	440	Crab	*Cosmonotus grayii	NE
Dromiidae	441	Japanese sponge crab	*Lauridromia dehaani	NE
	442	Crab	*Conchoecetes artificiosus	NE
Dorippidae	443	Granulated mask crab	*Paradorippe granulata	NE
Majidae	444	Kelp crab	*Pugettia sp.	
	445	Crab	<i>*Majidae</i> sp.	
Leucosiidae	446	Pebble crab	Leucosia craniolaris	NE

	447	Painted pebble crab	Leucosia anatum	NE
	448	Fleeting purse crab	*Myra fugax	NE
	449	Crab	* <i>Myra</i> sp.	NE
	450	Crab	*Leucosiidae sp.	
Calappidae	451	Box crab	#Calappa philargius	NE
	452	Spotted box crab	Calappa lophos	NE
	453	Reef box crab	*Calappa hepatica	NE
	454	Crab	*Cycloes granulosa	NE
Parthenopidae	455	Strong elbow crab	*Enoplolambrus validus	NE
Corystidae	456	Crab	Jonas distincta	NE
Matutiodea	457	Spotted moon crab	*Matuta planipes	NE
	458	Yellow moon crab	*Ashtoret lunaris	NE
Portunidae	459	Mud crab	Scylla paramamosain	NE
	460	Swimming crab	*Portunus hastatoides	NE
	461	Japanese blue crab	#Portunus trituberculatus	NE
	462	Swimming crab	*Portunus gracilimanus	NE
	463	Three-spot swimming crab	#Portunus sanguinolentus	NE
	464	Swimming crab	*Portunus argentatus	NE
	465	Flower crab	Portunus pelagicus	NE
	466	Red swimming crab	#Monomia haani	NE
	467	Swimming crab	*Charybdis bimaculata	NE
	468	Swimming crab	*Charybdis acuta	NE
	469	Crucifix crab	Charybdis feriatus	NE
	470	Rock crab	#Charybdis natator	NE

		471	Swimming crab	*Charybdis variegata	NE
		472	Soldier swimming crab	Charybdis miles	NE
		473	Swimming crab	Charybdis sagamiensis	NE
		474	Swimming crab	Charybdis amboinensis	NE
		475	Swimming crab	Charybdis hellerii	NE
		476	Swimming crab	Charybdis granulata	NE
		477		*Charybdis japonica	NE
		478	Swimming crab	*Charybdis sp.	
	Porcellanidae	479	Crab	*Porcellana pulchra	NE
		480	Crab	*Porcellanidae sp.	
	Xanthidae	481	Mosaic reef crab	Lophozozymus pictor	NE
	Pilumnidae	482	Crab	*Heteropilumnus sp.	
			Cephalopods (N=23)	·	·
Sepiida	Sepiidae	483	Spineless cuttlefish	#Sepiella maindroni	DD
		484	Golden cuttlefish	#Sepia esculenta	DD
		485	Kisslip cuttlefish	Sepia lycidas	DD
		486	Pharaoh cuttlefish	Sepia pharaonis	DD
		487	Bigfin reef squid	Sepioteuthis lessoniana	DD
		488	Cuttlefish	#Sepiidae sp.	
	Sepiolidae	489	Squid	<i>*Sepiola</i> sp.	
	Sepiadariidae	490	Koch's bottletail squid	*Sepiadarium kochii	LC
Teuthida	Loliginidae	491	Squid	Loligo japonicus	DD
		492	Indian squid	Loligo oshimai	DD
		493	Spear squid	Loligo bleekeri	LC

		494	Squid	Uroteuthis duvaucelii	DD
		495	Southern dumpling squid	Uroteuthis chinensis	DD
		496	Swordtip squid	*Uroteuthis edulis	DD
		497	Little squid	#Loliolus uyii	DD
		498	Squid	*Loliginidae sp.	
Oegopsida	Ommastrephidae	499	Squid	*Todarodes pacificus	LC
Octopoda	Octopodidae	500	Whiparm octopus	#Octopus variabilis	DD
		501	Webfoot octopus	#Octopus ocellatus	LC
		502	Octopus	#Amphioctopus aegina	LC
		503	Stareye octopus	#Amphioctopus kagoshimensis	LC
		504	Greater blue-ringed octopus	*Hapalochlaena lunulata	LC
		505	Octopus	#Octopodidae sp.	

In trap vessel fishery, catches included crabs, fishes, cuttlefishes, squids and octopus. Crabs included *M. haanii*, *P. sanguinolentus*, *Charybdis feriatus*, *C. natator* and *Calappa philargius* were recorded at the species level. For fishes, only a few species with high price or high volume were recorded at the species level, including *Epiniphelus akarra*, *Epiniphelus awoara*, *Evynnis cardinalis*, *Sebastiscus marmoratus* and *Platycephalus indicus*. Fishes were mainly recorded as species group, such as Synodontidae spp., Sillaginidae spp., Tetraodontidae spp. and Mullidae spp.. Small fishes were recorded as mixed fishes and sold with low price.

3.2.2 Endangered, threatened and protected species

Most of endangered, threatened and protected species observed at the landing ports of Dongshan County were Elasmobranchii speices. All Carcharhinidae species were listed in CITES Appendix II in 2022, and four of them (*Scoliodon macrorhynchos*, *Carcharhinus brevipinna*, *C. limbat*us, and *C. sorrah*) were recorded at the landing ports of Dongshan County according to the surveys from August 2023 to April 2024 (Fig. 3-1). *S. macrorhynchos* was the most common species observed in Carcharhinidae, and spotted almost every month except March and April 2024, with a total of 49 individuals. Their size range was about 40 cm to 75 cm total length. The other three species had low occurrence during landing port surveys. One *C. brevipinna* individual was recorded in August 2023 and its size was about 150 cm. Two *C. limbat*us were recorded in August 2023 and their sizes were about 80 cm. One *C. sorrah* individual was recorded in April 2024 and its size was about 145 cm.

Sphyrna lewini (Shpyrnidae) was listed as CITES Appendix II in 2014. A total of 21 individuals ranging from 50 cm to 80 cm were founded during the surveys from August 2023 to April 2024 (Fig. 3-2). They were spotted from August to November in 2023 and January in 2024.

All *Rhynchobatus* species (Rhynchobatidae) were listed as CITES Appendix II in 2019. One species, Bottlenose wedgefish *Rhynchobatus australiae*, was recorded according to the surveys from August 2023 to April 2024 (Fig. 3-3). Three individuals

were spotted, one in January 2024, one in February 2024 and one in April 2024. Their sizes were approximately 70-90 cm.

Rhincodon typus (Rhincodontidae) was listed in CITES Appendix II in 2003, and also listed as Category II of National Wildlife Protected Species in China (www.forestry.gov.cn/html/main/main_5461/20210205122239482485322/file/202102 05122347636743107.pdf). During the surveys, one caudal fin and other fins of *R. tupus* was recorded in April 2024 (Fig. 3-4).

Fig. 3-1 Scoliodon macrorhynchos, Carcharhinus brevipinna, Carcharhinu limbatus, and Carcharhinu sorrah found in trawl catches at the landing ports in Dongshan County (from top to bottom).

Fig. 3-2. Scalloped hammerhead shark Sphyrna lewini found in trawl catches in

Dongshan County.

Fig. 3-3. Bottlenose wedgefish *Rhynchobatus australiae* found in trawl catches in Dongshan County.

Fig. 3-4. The fins of whale shark *Rhincodon typus* found in trawl catches in Dongshan County.

All *Hippocampus* species were listed in CITES Appendix II in 2004, and the wild populations of all seahorses were listed as Category II of National Wildlife Protected Species in China. In Dongshan County, a total of four seahorse species were found. *H. trimaculatus* is the absolutely dominant landing species in seahorse bycatches from trawl fishery. During the surveys from August 2023 to April 2024, only *H. trimaculatus* was found at the landing ports of Dongshan County with low numbers.

To summary, a total of 13 cartilaginous fishes (*R. typus, Carcharodon carcharias, S. macrorhynchos, C. brevipinna, C. macloti, C. melanopterus, C. brachyurus, C. sorrah, C. leucas, C. limbatus, Sphyrna lewini, R. immaculatus, R. australiae, and Mobula tarapacana*) and four bony fishes (*H. trimaculatus, H. spinosissimus, H. kelloggi* and *H. mohnikei*), all listed as CITES Appendix II species, were found in trawl catches of Dongshan County throughout the surveys from August 2018 to April 2024 (in Phase I-VII).

Among the 505 species identified aforementioned in Dongshan County from August 2018 to April 2024, a total of 37 fish species were listed as threatened categories in the International Union for Conservation of Nature (IUCN) Red List (Table 3-2). Among the 37 species, 5 species (*S. lewini*, *R. immaculatus*, *R. australiae*, *Rhinobatos schlegelii* and *Larimichthys crocea*) were listed as "Critically Endangered", 13 species (*R. typus*, *Halaelurus buergeri*, *Mustelus griseus*, *Rhinobatos hynnicephalus*, *Platyrhina sinensis*, *Himantura uarnak*, *Maculabatis macrura*, *Aetobatus flagellum*, *Aetobatus narinari*, *M. tarapacana*, *Epinephelus akaara*, *Evynnis cardinalis*, and *Argyrosomus japonicus*) were listed as "Endangered", and 19 species (*C. carcharias*, *C. brevipinna*, *C. melanopterus*, *C. leucas*, *C. limbatus*, *Narcine lingual*, *N. maculate*, *Okamejei boesemani*, *P. tangi*, *Urolophus aurantiacus*, *Telatrygon zugei*, *Taeniurops meyeni*, *Gymnura japonica*, *H. kelloggi*, *H. mohnikei*, *H. spinosissimus*, *H. trimaculatus*, *Epinephelus bruneus* and *Nemipterus virgatus*) were listed as "Vulnerable". *E. cardinalis* is one of the most important food fishes in terms of catch volume proportion documented in this study.

3.3 Fishing areas of trawl and trap vessels

The fishing grounds remained unchanged during the surveys from August 2023 to April 2024. Based on the captain and crew interviews, trawl vessels from Dongshan County mainly operate in Minnan Fishing Ground, Taiwan Bank Fishing Ground, Yuedong Fishing Ground, Dongsha Fishing Ground and Southern Taiwan Fishing Ground within 116°-119° E and 21°50'-24°50' N (Lin et al., 2021)

Based on the GPS locations collected from logbook of trawl vessels (Phase VI), and logbook of trap vessels (Phase VII), the fishing grounds were further confirmed. For trawl vessels, the main fishing ground was in Minnan Fishing Ground, with extension to Taiwan Bank Fishing Ground and Yuedong Fishing Ground. For trap vessels, the fishing grounds were mainly in Taiwan Bank Fishing Ground, and also in Minnan Fishing Ground.

3.4 Fishery operation patterns of trawl and trap vessels

Based on 107 trawl vessels surveyed at the landing ports of Dongshan County during the surveys from August 2023 to April 2024, they generally spent 1-12 days/trip at sea (mean = 7.48, N = 107) (Table 3-3). Over 80% of trawl vessels surveyed spent more than 5 days/trip at sea, and about 15% of them spent more than 10 days/trip. The variation of fishing days at sea highly depended on the weather conditions.

The trawl fishery operation patterns are similar with the findings in August 2018-April 2023 surveys (in Phases I-VI), with an average of 6-8 days/trip throught the years (Table 3-3).

Table 3-3. Comparison of fishing days per trip (days/trip) of trawl vessels surveyed (N) in August 2018-April 2024 at the landing ports of Dongshan County.

Survey period Fishing days/trip (mean, range)

August-December 2018	7.67 (2-13) (N=61)
January-April and August-December 2019	7.16 (3-12) (N=79)
August-December 2020	6.48 (1-12) (N=54)
January-April 2021, October 2021-April 2022	6.34 (1-14) (N=79)
August 2022-April 2023	6.22 (1-14) (N=101)
August 2023-April 2024	7.48 (1-12) (N=107)

Based on three trap vessels surveyed (N = 3) in Dongshan County form October 2023 to April 2024, vessels did not come back except bad weather (only the case that government called back all vessels) and holiday (Chinese New Year, Feburary 2024; National Day, October 2023) (Table 3-4). In addition, fishing days from the three vessels surveyed were also obtained in August and September 2023 (Table 3-4). Because of the national summer fish moratorium (May 1st-August 16th), the fishing in August is only 15 days in maximum.

The average fishing days were 188 day/year in August 2023-April 2024, ranged from 181 days/year to 200 days/year (N = 3). In April 2024, the catches declined significantly and two vessels surveyed stopped fishing (Table 3-4).

Vessels	Jan	Feb	Mar	Apr	Aug	Sept	Oct	Nov	Dec	Total
vesseis	2024	2024	2024	2024	2023	2023	2023	2023	2023	
#1	28	21	22	0	13	25	23	28	24	184
#2	28	24	21	14	11	24	24	25	29	200
#3	28	20	21	0	13	25	24	27	23	181
Average	28	22	21	5	12	25	24	27	25	188

Table 3-4. Fishing days of trap vessels surveyed in October 2023-April 2024 from

Dongshan County.

In trap fishery, each trap vessel carried 3000 traps (i.e., 3 lines with 1000 traps per line), with a few hundreds of traps for replacement. There were approximate 15 crews in each trap vessel. Each vessel towed 3 trap lines (about 1 km per line) subsequently

and waited for about 2-3 hours before harvest. The number of lines towed per day were 4-7 lines/vessels. The baits commonly used were frozened *Scomber japonicus* and *Sardinalla* species. A block of frozen bait is about 10 kg, and about 600 blocks (i.e., 6 t) were used per vessel per month. Each bait fish individual was chopped into 3-4 pieces, and each trap put one piece of bait fish. The price for the bait was about 70 RMB/block.

3.5 Capture volumes and proportions by trawl vessels

3.5.1 Capture volumes and proportions of different taxonomic groups

Based on the trawl vessels surveyed (N = 107) at the landing ports of Dongshan County from August 2023 to April 2024, the average total capture volume was about 10592.08 kg/vessel/trip, and the average capture volumes and proportions of different taxonomic groups were calculated (错误!未找到引用源。3-5). The findings were summarized as below:

(1) The most dominant capture taxonomic group was the fishes (including food fish and feed fish), contributed to 71.13% (average of 7534.34 kg/vessel/trip) of the total capture volume (average of 10592.08 kg/vessel/trip).

(2) The average total food fish capture volume was 4975.37 kg/vessel/trip, which contributed to 46.97% of the total capture volume.

(3) The proportion of feed fishes was high (average of 2558.97 kg/vessel/trip), contributed to 24.16% of the total capture volume.

(4) The average total crustacean capture volume (1803.07 kg/vessel/trip) contributed to 17.02% of the total capture volume, with the estimated average volumes of 1545.01 kg/vessel/trip for crabs and 258.05 kg/vessel/trip for shrimps.

(5) The average total cephalopod capture volume was 1254.67 kg/vessel/trip, which contributed to 11.85% of the total capture volume.

Table 3-5. Capture volumes and proportions from trawl vessels surveyed (N = 107) inAugust 2023-April 2024 at the landing ports of Dongshan County.

Parameters	Mean	n (N = 107)					
Fishing days per trip	7.48	days/trip					
Average total capture volume per trip	10592.08	kg/vessel/trip					
Average total crustacean	1803.07	kg/vessel/trip					
capture volume per trip	Shrimps:	Crabs:					
Total crustacean volume/total	258.05 kg/vessel/trip	1545.01 kg/vessel/trip 7.02%					
capture volume	Shrimps: 2.44%	Crabs: 14.59%					
Average total fish capture volume per trip	7534.34 kg/vessel/trip						
Total fish volume/total capture volume	71.13%						
Average total food fish capture volume per trip	4975.37	kg/vessel/trip					
Total food fish volume/total capture volume	46.97%						
Average total feed fish capture volume per trip	2558.97	kg/vessel/trip					
Total feed fish volume/total capture volume	2	4.16%					
Average total cephalopod capture volume per trip	1254.67	kg/vessel/trip					
Total cephalopod volume/total capture volume	1	1.85%					

Based on the average CPUE (kg/vessel/day, N = 107) of the surveyed trawl vessels in August 2023-April 2024, the number of registered trawl vessels in Dongshan (N = 650) and the annual fishing days (obtained in Phase V-VI) (84.5 days/year), the estimated annual capture volume of trawl fishery in Dongshan County was 79035.63 t (Table 3-6).

Species	CPUE	Number of	Fishing	Estimated capture			
group	(kg/vessel/day)	vessels	days (day)	volume (t)			
Food fish	703.73			38652.50			
Feed fish	325.13			17857.78			
Crustacean	245.98	650	84.5	13510.31			
Cephalopod	164.13			9015.04			
Total	1438.97			79035.63			

Table 3-6. Estimated annual capture volume of trawl fishery in Dongshan County.

3.5.2 Crabs

The crab capture volume proportions in the total capture volumes of trawl fishery (N = 107) in Dongshan County from August 2023 to April 2024 were further analyzed (Table 3-7; Fig.3-7 to 3-9). The findings were summarized as below:

(1) Crab proportions in the total capture volumes of trawl fishery ranged from 4.79%
in February 2024 to 32.00% in August 2023, including four main crab species, *M. haani*, *P. sanguinolentus*, *C. natator* and *C. philargius*.

(2) Among the total crab capture volume of 1545.01 kg/vessel/trip, *M. haani* was 1119.39 kg/vessel/trip, *P. sanguinolentus* was 291.06 kg/vessel/trip, *C. natator* was 43.63 kg/vessel/trip and *C. philargius* was 90.53 kg/vessel/trip, contributing to 10.57%, 2.75%, 0.41% and 0.86% of the total capture volume, respectively.

(3) The dominant crab species in trawl fishery was *M. haani*, contributing around 70% of the total crab production. The proportions of *M. haani* varied monthly, ranging from 3.48% in April 2024 to 24.01% in August 2023. The capture volumes of *M. haani* ranged from 215.57 kg/vessel/trip to 3406.14 kg/vessel/trip.

(4) Based on the average fishing days at sea per trip, the average CPUE of M. haani

ranged from 25.80 kg/vessel/day in April 2024 to 545.64 kg/vessel/day in August 2023 (mean = 158.36 kg/vessel/day).

(5) Based on the average fishing days at sea per trip, the average CPUE of *P. sanguinolentus* ranged from 7.48 kg/vessel/day in February 2024 to 144.17 kg/vessel/day in August 2023 (mean = 40.06 kg/vessel/day).

Table 3-7. Average capture volumes (kg/vessel/trip) and proportions (%) of four main crab species in the total capture volumes from trawl vessels surveyed (N = 107) in

Crab species	Average volume (kg/vessel/trip)	Proportion
Monomia haani	1119.39	10.57%
Portunus sanguinolentus	291.06	2.75%
Charybdis natator	43.63	0.41%
Calappa philargius	90.53	0.86%
Other crabs	0.41	0.00%
Total	1545.01	14.59%

August 2023-April 2024 at the landing ports of Dongshan County.

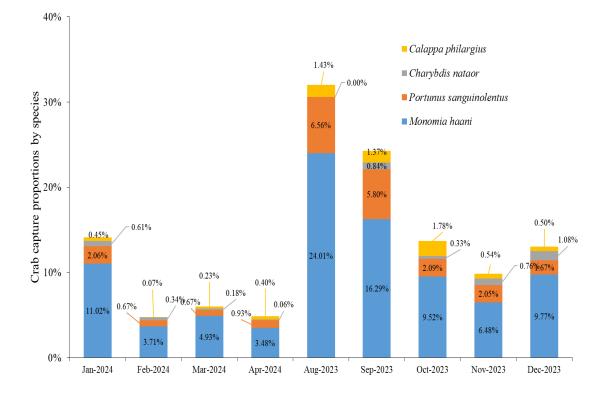


Fig. 3-7. Crab proportions (%) in the total capture volumes by species from trawl vessels surveyed in August 2023-April 2024 at the landing ports of Dongshan County.

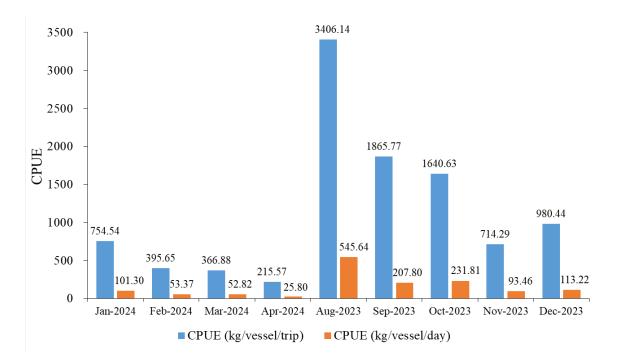


Fig. 3-8. Monthly average CPUE (kg/vessel/trip and kg/vessel/day) of *Monomia haani*, surveyed in August 2023-April 2024 at the landing ports of Dongshan County.

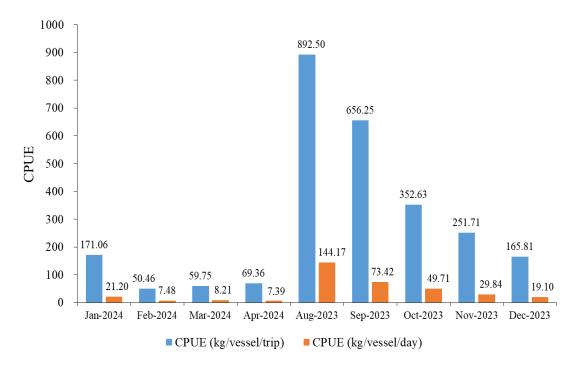


Fig. 3-9. Monthly average CPUE of Portunus sanguinolentus by kg/vessel/trip and

kg/vessel/day, surveyed in August 2023-April 2024 at the landing ports of Dongshan County.

3.5.3 Food fishes

In August 2023-April 2024, the dominant food fish species or species groups in trawl fishery in Dongshan County were *Evynnis cardinalis*, Synodontidae spp. (mainly *Trachinocephalus myops, Saurida elongate*, and *S. tumbil*), *Decapterus* spp. (mainly *D. maruadsi*), *Trachurus japonicus*, Sillaginidae spp. (mainly *Sillago sihama*), Mullidae spp. (mainly *Upeneus japonicus*), *Siganus fuscescens*, Trichiuridae spp., Callionymidae spp., Ammodytidae spp. (*Bleekeria viridianguilla* and *Bleekria mitsukurii*), Monacanthidae spp. (mainly *Paramonacanthus sulcatus* and *Stephanolepis cirrhifer*) and Tetraodontidae spp. (mainly *Lagocephalus wheeleri* and *Takifugu oblongus*).

For dominant food fish species and species groups, their capture volume proportions in the total capture volumes showed monthly variation (Table 3-8).

Table 3-8. Proportions (%) of dominant food fish species or species group in trawl fishery from August 2023 to April 2024 at the landing

Fish species/Groups	Jan-2024	Feb-2024	Mar-2024	Apr-2024	Aug-2023	Sep-2023	Oct-2023	Nov-2023	Dec-2023
Total fish	64.15%	85.83%	77.11%	77.28%	57.58%	59.74%	72.71%	73.82%	65.57%
Synodontidae spp	8.71%	3.77%	6.35%	10.87%	6.21%	21.37%	3.48%	11.53%	12.86%
Evynnis cardinalis	1.48%	0.21%	0.45%	0.61%	37.28%	15.70%	6.75%	1.70%	1.75%
Sillaginidae spp.	2.51%	3.41%	4.49%	5.43%	0.18%	0.49%	3.43%	4.58%	3.38%
Decapterus maruadsi &	1.62%	0.27%	0.25%	0.91%	3.69%	7.02%	11.10%	2.86%	1.89%
Trachurus japonicus									
Mullidae spp.	1.48%	1.28%	1.24%	4.04%	3.74%	3.27%	1.08%	0.95%	1.34%
Trichiuridae spp.	0.33%	0.01%	0.00%	0.01%	0.60%	0.91%	0.56%	0.49%	0.54%
Siganus fuscescens	0.29%	0.00%	0.19%	0.30%	1.61%	0.20%	0.15%	3.39%	0.19%
Ammodytidae spp.	10.08%	58.60%	47.33%	28.96%	0.00%	1.12%	0.07%	0.36%	6.72%
Callionymidae spp.	0.02%	0.16%	0.11%	0.15%	0.03%	0.01%	0.03%	0.01%	0.05%
Monacanthidae spp.	0.35%	0.36%	0.34%	0.32%	0.00%	0.32%	0.50%	0.36%	0.49%

ports of Dongshan County.

Based on the 107 trawl vessels surveyed at the landing ports of Dongshan County in August 2023-April 2024, food fishes contributed to 29.37% (in November 2023)-69.39% (in February 2024) of the total capture volumes (Fig. 3-10).

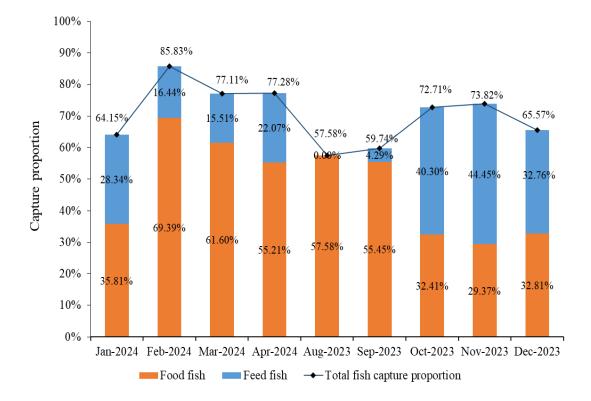


Fig. 3-10. Food and feed fish capture proportions (%) in the total capture volumes from trawl vessels surveyed (N = 107) in August 2023-April 2024 at the landing ports of Dongshan County.

3.5.4 Feed fishes

3.5.4.1 Capture proportions of feed fishes

The "feed fishes" in this report were those small-sized, low-valued and poorly preserved fishes (also including crustaceans and cephalopods), with their destination to aquaculture farms, mentioned by the captains of the trawl vessels surveyed (Zhang et al., 2018).

Based on the 107 trawl vessels surveyed at the landing ports of Dongshan County in August 2023-April 2024, feed fishes contributed to 0.00% (August 2023)-44.45%

(November 2023) of the total capture volumes (Fig. 3-10). The reason without feed fish in August 2023 was that the feed fish were discarded at sea because of the good harvest right after the termination of the national summer fishing moratorium based on the captain and crew interviews.

3.5.4.2 Species diversity in feed fishes

Based on the monthly and randomly samplings of feed fishes (mean = 2.02 kg, ranging from 1.57 kg to 2.86 kg) at the landing ports of Dongshan County from September 2023 to April 2024 (no feed fish landing in August 2023), 119 species with 76 fishes, 36 crustaceans and 7 cephalopods were identified (Table 3-9). There were 13 species dominated in feed fishes including fishes, crabs and squids, and some were commercially important.

Table 3-9. Species diversity, size range (standard length for fishes and cephalopods, carapace width for crabs) and proportions in feed fishes of

		Jan-2	024	Feb-2	024	Mar-2	024	Apr-2	024	Sep-2	023	Oct-2	023	Nov-2	023	Dec-2	023
No.	Species name	%	Size	%	Size	%	Size	%	Size	%	Size	%	Size	%	Size	%	Size
			(cm)		(cm)		(cm)		(cm)		(cm)		(cm)		(cm)		(cm)
1	Platyrhina tangi	-	-	-	-	-	-	-	-	3.0%	24.1	-	-	-	-	-	-
2	Gymnothrax	-	-	1.3%	30.1	-	-	0.8%	23.7	0.4%	22.2	-	-	-	-	-	-
	reticularis																
3	*Caecula pterygera	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.3%	28.5
4	Pisodonophis	-	-	1.6%	43.2	4.8%	44.5-	1.2%	33.9	-	-	-	-	-	-	-	-
	cancrivorus						49.1										
5	Callechelys kuro	1.6%	28.6-	0.8%	37.6	-	-	-	-	-	-	-	-	-	-	-	-
			34.9														
6	*Ichthyapus vulturis	-	-	-	-	0.9%	34.3	-	-	-	-	-	-	-	-	-	-
7	*Ophichthidae sp.	-	-	-	-	-	-	-	-	0.7%	31.1	-	-	-	-	-	-
8	Oxyconger	-	-	0.4%	23.6	-	-	2.8%	24.2-	3.8%	20.9-	9.6%	17.6-	-	-	-	-
	leptognathus								30.0		24.9		31.1				
9	Gnathophis	-	-	-	-	-	-	-	-	0.1%	14.2	-	-	-	-	-	-
	heterognathos																
10	Ariosoma meeki	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.0%	14.4-
																	23.2
11	*Ariosoma	0.1%	9.3	0.2%	13.2	-	-	-	-	2.6%	23.2-	2.7%	13.2-	0.3%	14.5	1.3%	10.8-

trawl catches in September 2023-April 2024 in Dongshan County.

	megalops										28.2		19.8				14.8
12	Ariosoma sp.	-	-	-	-	-	-	0.7%	14.2-	-	-	-	-	-	-	-	-
									15.5								
13	*Congridae sp.	-	-	-	-	0.1%	10.8	-	-	-	-	-	-	-	-	-	-
14	*Saurenchelys	-	-	-	-	-	-	0.9%	43.1	-	-	-	-	-	-	-	-
	fierasfer																
15	*Encrasicholina	-	-	0.1%	8.2	-	-	-	-	-	-	0.2%	4.7-7.0	0.1%	6.6	0.3%	8.3
	punctifer																
16	*Gonorynchus	-	-	0.5%	7.9-8.6	-	-	0.5%	8.3-9.6	-	-	-	-	-	-	-	-
	abbreviatus																
17	Plotosus lineatus	-	-	-	-	-	-	-	-	3.2%	8.5-10.5	-	-	-	-	-	-
18	Trachinocephalus	1.7%	7.1-	2.5%	9.1-15.1	0.8%	9.1-13.5	1.3%	6.1-12.2	11.3%	5.4-14.1	1.9%	7.6-15.2	1.9%	7.1-10.2	1.1%	8.6-10.5
	myops		11.0														
19	Synodus fuscus	0.7%	13.2	-	-	-	-	0.4%	10.9	2.4%	6.2-15.5	1.1%	9.0-14.4	0.2%	9.0	-	-
20	Saurida elongata	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.3%	9.8
21	Saurida tumbil	-	-	-	-	-	-	-	-	0.8%	15.4	-	-	-	-	-	-
22	Saurida	-	-	-	-	1.1%	9.2-13.2	1.4%	6.5-13.3	2.2%	5.1-10.3	8.2%	5.2-14.4	5.0%	8.3-14.3	4.9%	3.4-13.5
	undosquamis																
23	*Bregmaceros sp.	1.1%	3.0-6.1	0.1%	5.0-6.1	0.2%	5.2-6.5	0.6%	5.0-7.2	0.1%	6.0-6.3	0.0%	4.9	0.4%	4.5-6.5	0.3%	4.4-6.4
24	*Ophidion	-	-	-	-	-	-	-	-	0.3%	11.0	-	-	-	-	-	-
	muraenolepis																
25	Hippocampus	-	-	-	-	-	-	-	-	0.1%	6.9	0.1%	8.9	0.2%	10.7	-	-
	trimaculatus																
26	Halicampus grayi	-	-	-	-	-	-	-	-	0.1%	15.1	-	-	-	-	-	-

27	*Pegasus	-	-	-	-	-	-	-	-	-	-	-	-	0.1%	5.6	-	-
	laternarius																
28	*Apistus carinatus	-	-	1.6%	11.7-	-	-	0.7%	5.8-10.1	2.9%	14.5-	3.4%	3.6-12.2	0.6%	7.5-7.8	1.5%	3.5-8.8
					12.4						14.7						
29	*Minous pusillus	0.2%	4.8-5.4	-	-	-	-	-	-	-	-	0.1%	3.5-4.6	-	-	-	-
30	*Onigocia spinosa	1.1%	12.5	-	-	0.4%	10.4	-	-	-	-	-	-	0.4%	9.2	-	-
31	*Sorsogona	3.2%	6.4-	3.5%	9.1-10.7	2.3%	7.0-10.5	5.8%	7.7-11.5	1.2%	14.6	1.5%	5.9-8.9	4.2%	4.5-11.0	-	-
	tuberculata		11.2														
32	*Inegocia guttata	-	-	1.9%	17.9	-	-	-	-	-	-	-	-	3.3%	18.5	-	-
33	Priacanthus	-	-	1.3%	12.1	-	-	-	-	-	-	-	-	-	-	-	-
	macracanthus																
34	Priacanthus tayenus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.3%	6.5
35	*Ostorhinchus	-	-	1.0%	7.8-9.9	-	-	-	-	0.4%	8.9	-	-	-	-	0.4%	8.3
	semilineatus																
36	Ostorhinchus	0.1%	4.8	-	-	-	-	0.6%	9.5	0.2%	3.7-5.5	0.2%	4.1-5.7	-	-	0.2%	3.1-5.0
	fasciatus																
37	*Apogonichthyoides	1.3%	4.2-7.2	3.5%	5.9-7.8	1.0%	5.6-7.7	2.0%	6.1-7.3	1.5%	7.7-8.5	0.5%	4.5-6.9	1.1%	5.3-7.1	2.4%	4.9-7.3
	niger																
38	*Jaydia lineata	0.5%	4.3-5.7	0.7%	4.7-7.3	-	-	-	-	0.0%	3.7	-	-	-	-	-	-
39	*Jaydia carinatus	1.0%	11.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
40	Sillago ingenuua	6.4%	6.1-	1.6%	6.2-12.7	3.6%	9.2-16.1	0.9%	8.5-12.9	18.2%	3.9-11.7	8.4%	4.0-11.5	5.0%	7.0-10.1	7.6%	4.2-11.1
			11.4														
41	Selaroides	-	-	-	-	-	-	0.9%	12.2	0.9%	12.6	-	-	1.5%	13.3	-	-
	leptolepis																

42	Decapterus maruadsi	-	-	-	-	0.0%	4.5	0.1%	6.5	-	-	4.1%	21.0	-	-	-	-
43	*Equulites rivulatus	3.0%	3.5-6.7	8.9%	4.8-6.8	9.6%	4.8-7.0	4.5%	4.9-6.6	0.2%	3.0-4.7	1.1%	2.7-5.4	0.6%	4.7-6.0	1.4%	3.2-5.8
44	Plectorhinchus pictus	-	-	-	-	-	-	-	-	0.1%	5.4	-	-	-	-	-	-
45	Evynnis cardinalis	-	-	0.0%	3.5	0.2%	3.2-4.3	3.2%	4.1-8.1	-	-	-	-	-	-	-	-
46	*Sciaenidae sp.	-	-	-	-	0.0%	3.6	0.0%	3.8	-	-	-	-	0.1%	4.5	1.5%	7.8-8.7
47	Upeneus japonicus	7.2%	8.8- 11.7	2.4%	9.2-11.6	1.3%	10.1- 11.5	1.1%	9.5-11.1	4.6%	3.9-10.9	4.4%	3.6-9.8	1.4%	6.1-9.2	0.4%	8.8
48	Teixeirichthys jordani	-	-	-	-	1.6%	11.0- 13.2	7.2%	11.1- 15.1	2.3%	5.8-10.5	1.1%	10.2	-	-	-	-
49	*Pomacentrus sp.1	-	-	-	-	-	-	2.2%	11.7- 11.9	0.0%	3.2	-	-	-	-	-	-
50	*Suezichthys gracilis	0.3%	8.7	0.7%	12.3	-	-	0.4%	9.4	0.1%	7.5	-	-	0.4%	9.6	0.8%	8.8-9.4
51	Iniistius verrens	-	-	0.9%	12.0	0.1%	7.0	-	-	-	-	-	-	-	-	-	-
52	Parapercis pulchella	-	-	0.4%	10.5	-	-	-	-	-	-	-	-	-	-	1.0%	11.5
53	*Parapercis ommatura	0.2%	7.8	0.2%	7.8	-	-	-	-	-	-	0.2%	5.9-6.7	-	-	0.2%	7.8
54	Callionymus huguenini	17.1%	4.5- 19.5	5.5%	3.2-16.7	7.9%	4.5-17.3	5.2%	2.9-16.7	1.6%	3.8-12.4	1.1%	4.0-9.1	8.5%	4.2-14.8	6.6%	5.7-11.7
55	Callionymus planus	0.4%	3.5-8.8	1.8%	4.1-9.5	5.7%	5.3-11.8	4.1%	4.4-9.8	-	-	-	-	0.1%	6.6	0.4%	5.3-7.9
56	*Percophidae sp.	0.0%	4.7	0.1%	4.4-5.0	0.1%	3.8-5.5	0.0%	4.7	0.0%	5.0	-	-	0.0%	4.7	0.1%	3.8-6.0

57	Trichonotus	0.5%	7.6-	0.1%	7.8-9.8	0.4%	8.5-10.9	0.9%	7.1-10.1	0.1%	9.9-12.4	0.2%	9.6-12.4	0.7%	7.8-11.5	1.2%	8.7-12.7
	filamentosus		10.1														
58	Trichonotus setiger	4.4%	5.7-	8.3%	4.1-18.2	6.4%	6.5-18.6	2.4%	5.2-16.1	1.0%	8.2-14.5	2.9%	6.2-19.3	1.3%	9.9-14.3	3.9%	9.4-17.2
			17.8														
59	Bleekeria	5.7%	8.9-	19.5%	5.2-14.4	19.9%	7.1-13.6	7.2%	6.2-13.4	6.0%	7.9-15.1	4.5%	5.3-14.6	7.0%	9.6-15.2	8.0%	3.2-16.2
	viridianguilla		13.2														
60	Bleekria mitsukurii	3.7%	7.2-	5.6%	7.8-13.2	8.2%	8.4-12.1	6.3%	9.2-12.2	3.3%	9.1-10.9	3.6%	9.3-12.5	5.0%	8.0-11.5	5.2%	9.2-12.3
			12.8														
61	*Uranoscopus	0.7%	8.2	0.2%	6.7	5.4%	8.6-13.8	3.1%	2.8-13.8	0.0%	2.9	0.2%	2.8-4.5	3.1%	3.6-14.6	2.2%	4.4-12.2
	chinensis																
62	*Ichthyscopus	-	-	-	-	-	-	0.7%	6.7-8.1	-	-	-	-	-	-	-	-
	lebeck																
63	*Gobiidae sp.1	-	-	0.1%	4.2-5.7	-	-	-	-	0.0%	3.7-4.3	-	-	0.4%	4.4-6.5	-	-
64	*Gobiidae sp.2	0.0%	4.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
65	*Valenciennea	-	-	0.3%	10.2	-	-	-	-	-	-	-	-	-	-	-	-
	wardi																
66	Siganus fuscescens	-	-	2.0%	16.1	-	-	-	-	-	-	-	-	-	-	-	-
67	*Tarphops	0.3%	8.1	0.4%	9.6	-	-	-	-	1.0%	5.9-6.8	2.1%	6.2-7.1	-	-	0.4%	6.5-7.0
	oligolepis																
68	*Engyprosopon	3.0%	5.6-	3.5%	6.1-12.6	3.0%	4.5-12.1	3.4%	3.9-10.2	2.4%	5.0-13.5	1.0%	5.5-8.5	2.3%	7.1-12.2	2.4%	5.9-11.2
	multisquama		10.4														
69	*Bothidae sp.	-	-	-	-	0.0%	5.1	-	-	-	-	-	-	-	-	-	-
70	*Samaris cristatus	-	-	-	-	-	-	-	-	0.5%	4.6-7.9	-	-	-	-	-	-
71	*Zebrias crossolepis	-	-	-	-	-	-	-	-	-	-	-	-	1.5%	12.9	-	-

72	Liachirus	-	-	_	_	-	_	2.1%	9.6-11.6	1.3%	14.2	_	_	_	_	0.5%	6.2-7.8
12	melanospilos		_				_	2.170	2.0-11.0	1.570	17.2	_	_	_	_	0.570	0.2-7.0
72	-											0.00/	7.0				
73	*Cynoglossus	-	-	-	-	-	-	-	-	-	-	0.2%	7.0	-	-	-	-
	puncticeps																
74	*Cynoglossus itinus	2.0%	8.2-	0.2%	5.0-7.2	1.1%	5.3-9.5	1.8%	6.7-14.5	1.5%	12.7-	0.8%	12.2	1.1%	5.5-11.2	2.8%	6.6-13.5
			12.5								13.9						
75	*Cynoglossus sp.	-	-	-	-	-	-	-	-	0.1%	6.9	-	-	-	-	-	-
76	Stephanolepis	0.3%	6.5	-	-	-	-	-	-	-	-	1.7%	2.9-8.2	-	-	-	-
	cirrhifer																
77	*Lophosquilla	0.7%	4.6-7.2	0.2%	4.7-6.1	0.3%	6.2-6.9	1.1%	5.9-7.5	0.2%	5.1-5.3	0.9%	4.2-6.3	0.3%	5.2-5.8	1.1%	3.7-7.3
	costata																
78	*Carinosquilla	-	_	_	_	0.2%	7.4	-	_	_	_	-	-	_	-	-	<u></u>
/0	multicarinata					0.270	/.1										
79	<i>Odontodactylus</i>					1.4%	15.2										
/9	-	-	-	-	-	1.4%	15.2	-	-	-	-	-	-	-	-	-	-
	japonicus																ļ
80	*Sicyonia sp.	0.1%	4.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-
81	*Palaemonidae sp.	-	-	0.1%	4.1-4.5	-	-	-	-	0.0%	2.4-3.4	0.0%	3.8	-	-	-	-
82	Trachysalambria	0.3%	6.9	0.6%	5.3-10.6	0.3%	5.4-5.8	0.8%	5.2-6.9	-	-	0.8%	4.6-6.8	-	-	1.3%	4.3-6.1
	curvirostris																
83	Kishinouyepenaeop	1.3%	5.8-6.5	0.9%	5.5-7.9	0.6%	8.5	-	-	-	-	-	-	-	-	0.7%	3.5-4.1
	sis cornuta																
84	*Mierspenaeopsis	-	-	-	-	-	-	-	-	0.0%	4.3	-	-	-	_	0.1%	2.6-3.8
	cultrirostris																
85	*Batepenaeopsis	0.1%	4.1	0.1%	3.6-4.4	0.1%	4.1-5.1	_	_	_	_	-	-	-	_	_	_
05		0.170	4.1	0.170	5.0-4.4	0.170	4.1-3.1	-	-	-	-		-		-	-	-
	tenella																

86	Metapenaeopsis	1.0%	6.8	1.0%	5.8-8.9	0.3%	5.8-7.1	0.2%	4.6-4.9	-	-	0.1%	5.6	0.3%	-	-	5.8
	barbata																
87	Metapenaeopsis	-	-	-	-	-	-	-	-	-	-	-	-	0.3%	6.8	-	-
	lamellata																
88	*Metapenaeopsis	8.8%	3.5-5.3	5.9%	3.3-5.5	2.5%	2.8-5.5	2.6%	2.8-5.3	0.3%	2.8-3.7	1.5%	2.8-4.5	2.7%	3.5-5.7	8.1%	2.8-5.3
	sp.1																
89	*Metapenaeopsis	0.9%	4.8-5.3	-	-	-	-	-	-	3.0%	4.3-7.5	4.6%	4.2-8.0	3.0%	5.0-7.8	1.5%	3.9-5.9
	sp.2																
90	*Birulia kishinouyei	-	-	-	-	-	-	0.0%	2.1	-	-	0.0%	1.6	-	-	0.0%	2.4-2.5
91	*Scyllarus cultrifer	-	-	-	-	-	-	-	-	0.0%	2.0	-	-	-	-	-	-
92	*Cosmonotus grayii	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0%	0.7
93	*Conchoecetes	0.1%	1.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	artificiosus																
94	*Pugettia sp.	-	-	-	-	-	-	-	-	0.0%	1.3	-	-	-	-	-	-
95	*Majidae sp.	-	-	0.0%	1.2	-	-	0.0%	1.3	0.0%	0.7-1.0	0.0%	1.2	-	-	-	-
96	*Myra fugax	0.1%	1.4	-	-	-	-	-	-	0.1%	1.1-1.6	0.1%	1.2	-	-	-	-
97	<i>*Leucosiidae</i> sp.	-	-	0.1%	0.8-1.2	0.0%	0.8	0.0%	1.2	-	-	-	-	0.1%	1.3	-	-
98	Calappa philargius	0.0%	1.4	-	-	0.3%	2.5-3.6	0.2%	2.9	0.6%	1.4-3.8	0.2%	1.4-2.1	0.2%	1.6-2.3	-	-
99	*Cycloes granulosa	-	-	-	-	0.0%	0.7-1.0	0.2%	0.9-2.0	-	-	-	-	-	-	-	-
100	*Enoplolambrus	-	-	0.1%	1.6	-	-	-	-	0.1%	1.5-2.0	0.1%	1.5	-	-	-	-
	validus																
101	Jonas distincta	-	-	-	-	-	-	-	-	-	-	0.0%	0.8	0.2%	1.6	-	-
102	*Matuta planipes	0.1%	2.4	0.2%	1.6-2.5	0.9%	2.3-3.5	0.5%	2.6-3.4	-	-	-	-	-	-	-	-
103	*Ashtoret lunaris	-	-	-	-	-	-	0.0%	1.1	-	-	-	-	-	-	-	-

104	*Portunus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.2%	3.8
	hastatoides																
105	*Portunus	0.7%	1.5-3.4	0.1%	2.5	-	-	-	-	0.0%	1.9	1.1%	1.9-3.0	3.6%	1.9-3.5	3.0%	1.1-3.9
	gracilimanus																
106	Portunus	1.3%	6.8	-	-	0.1%	2.0-3.9	1.7%	2.1-8.5	0.1%	3.3	0.4%	2.5-4.6	4.3%	3.4-6.9	-	-
	sanguinolentus																
107	*Portunus	0.7%	4.9	-	-	-	-	-	-	-	-	1.3%	2.7-4.2	1.5%	3.1-5.3	3.0%	3.9-5.5
	argentatus																
108	Monomia haani	5.3%	1.8-5.9	2.1%	2.3-5.6	4.0%	2.0-5.5	8.7%	2.1-6.7	4.1%	3.7-7.4	5.9%	1.5-4.7	17.7%	2.3-6.2	12.6%	2.3-5.9
109	*Charybdis	-	-	0.1%	2.5	-	-	-	-	-	-	0.1%	2.3	-	-	0.1%	2.3
	bimaculata																
110	Charybdis natator	-	-	-	-	-	-	-	-	-	-	0.7%	1.8-2.9	2.5%	2.5-4.3	-	-
111	*Charybdis	0.1%	1.7-2.0	0.2%	1.5-2.5	0.2%	1.5-2.3	0.7%	2.0-2.9	0.5%	1.1-1.8	2.5%	1.0-2.4	0.7%	1.4-2.4	0.5%	1.2-2.3
	variegata																
112	*Charybdis	-	-	-	-	-	-	-	-	-	-	0.5%	3.7	-	-	-	-
	japonica																
113	* <i>Sepiola</i> sp.	2.2%	1.2-3.6	1.1%	1.3-2.5	1.3%	1.5-5.0	3.3%	1.5-4.3	-	-	0.3%	3.5	1.6%	1.8-3.5	1.2%	2.2-3.4
114	*Sepiadarium kochii	-	-	0.2%	1.6-2.3	0.3%	1.3-3.0	0.5%	2.5-3.0	-	-	0.4%	1.7-3.0	-	-	0.4%	3.0
115	Uroteuthis duvaucelii	-	-	1.6%	4.0-7.0	-	-	-	-	-	-	-	-	-	-	-	-
116	*Loliginidae sp.	4.2%	3.0-6.0	1.1%	4.5-7.5	0.8%	5.0-7.5	1.2%	10.6	6.9%	2.4-6.1	8.5%	2.0-6.0	1.3%	4.5	3.2%	2.3-10.3
117	Octopus ocellatus	1.3%	3.0	-	-	0.1%	2.0	0.6%	2.4-2.5	-	-	1.1%	2.7-3.3	0.9%	3.4	0.7%	3.2
118	Amphioctopus aegina	2.5%	2.3-3.0	1.0%	2.3-3.9	-	-	-	-	-	-	2.2%	2.0-4.3	0.3%	2.2	-	-
119	Octopodidae sp.	-	-	-	-	-	-	-	-	1.4%	3.8-4.0	-	-	0.6%	3.8	-	-

3.5.4.3 Monomia haani in feed fishes

M. haani was one of the few common species found in feed fish samples from trawl catches in Dongshan County and contributed to 2.1%-17.7% of the total feed fish volumes in August 2023-April 2024 (Table 3-9).

Based on the size for 50% female maturity (6.3 cm CW) of *M. haani* (Lin et al., 2021), up to 98.8% individuals (N = 168) of *M. haani* were juveniles in feed fishes, and the juvenile proportions were from 75.0% to 100% in September 2023-April 2024.

The smallest size of *M. haani* in feed fishes was 1.5 cm CW, caught in October 2023 (Table 3-10).

Based on the feed fish samples in Phases II-VII, all small *M. haani* individuals \leq 1.5 cm CW were mainly found in February-April and September-November, inferring the settlement of *M. haani* could be in most months of years (Table 3-10).

Table 3-10. Smallest *Monomia haani* individuals in feed fish samples in Phases II-VII (January 2019-April 2024) at the landing ports of Dongshan County.

Month	Carapace width (cm)
February 2019	1.3
April 2019	1.2
November 2019	1.5
September 2022	1.4
March 2023	1.2
April 2023	1.2
October 2023	1.5

3.5.5 Average capture proportions from 2018 to 2024 (Phases I-VII)

Based on the trawl vessels surveyed at the landing ports of Dongshan County from August 2018 to April 2024 (Phases I-VII), the highest average total capture volume recorded was 10813.98 kg/vessel/trip in August 2020-December 2020 (Phase IV) and the lowest was about 7855 kg/vessel/trip estimated from surveys in August-December 2018 (Phase I) (Table 3-11). The largest proportion of total capture volume was fish, over 70% in each phase, followed by crustacean, then by cephalopod.

Table 3-11. Average capture volumes (kg/vessel/trip) and proportions from trawl vessels surveyed from 2018 to 2024 (in Phase I-VII) at the

Pl	nase	VII	VI	V	IV	II-III	Ι
Surve	y period	2023.8-2024.4	2022.8-2023.4	2021.10- 2022.4	2020.8- 2020.12	2019.1-2019.4 & 2019.8- 2019.12	2018.8- 2018.12
Number of ve	essels surveyed	107	101	79	54	79	61
Average fishing	g days (days/trip)	7.48	6.22	6.34	6.48	7.16	7.67
C	capture volume ssel/trip)	10592.08	8179.9	8751.28	10813.89	8153.79	7855.00
Create e e e e	Volume	1803.07	1489.73	1132.84	1621.48	1202.46	-
Crustacean	Proportion%	17.02%	18.21%	12.94%	14.99%	14.75%	-
c1 :	Volume	258.05	239.83	360.31	212.38	271.49	-
Shrimp	Proportion%	2.44%	2.93%	4.12%	1.96%	3.46%	-
0.1	Volume	1545.01	1249.90	772.71	1409.09	920.33	1603.00
Crab	Proportion%	14.59%	15.28%	8.83%	13.03%	11.29%	20.41%
Fish	Volume	7534.34	5875.85	6731.53	8290.82	5805.80	-

landing ports of Dongshan County.

	Proportion%	71.13%	71.83%	76.92%	76.67%	71.20%	-
Food fish	Volume	4975.37	3802.60	4039.44	7128.06	4435.31	-
rood lish	Proportion%	46.97%	46.49%	46.16%	65.92%	54.39%	-
Each figh	Volume	2558.97	2073.25	2692.09	1162.76	1370.49	-
Feed fish	Proportion%	24.16%	25.35%	30.76%	10.75%	16.81%	-
Canhalanada	Volume	1254.67	814.32	886.91	901.00	1145.54	-
Cephalopods	Proportion%	11.85%	9.96%	10.13%	8.33%	14.05%	-

3.6 Capture volumes and proportions by trap vessels

3.6.1 Capture volumes and proportions of different taxonomic groups

Based on the logbook data collected from three trap vessels surveyed in Dongshan County from October 2023 to April 2024, the average daily total capture volumes (kg/ day) were between 206 kg/day in April 2024 and 670 kg/day in October 2023 (Table 3-12; Fig. 3-11), with the average of 472 kg/vessel/day. Because of low catches in March 2024 (< 400 kg/day), two trap vessels stopped fishing in April 2024, i.e., one month earlier than the initial of the national summer fishing moratorium. The daily catches declined from October 2023 to April 2024.

Table 3-12. Average daily total capture volumes (kg/day) of trap vessels surveyed (N = 3) in October 2023-April 2024 from Dongshan County.

Vessels	Jan	Feb	Mar	Apr	Oct	Nov	Dec
vessels	2024	2024	2024	2024	2023	2023	2023
#1	406	345	399	-	560	588	537
#2	424	462	325	206	670	562	616
#3	470	615	283	-	627	447	427
Average	433	474	336		619	532	527

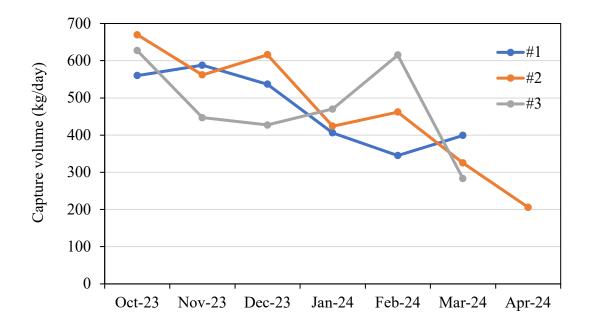


Fig. 3-11. Average daily capture volumes (kg/day) of trap vessels surveyed (N = 3) in October 2023-April 2024 from Dongshan County.

Based on the logbook data collected from three trap vessels surveyed in Dongshan County from October 2023 to April 2024, the average daily number of trap lines towed was 6 lines/day (ranged 4-7 lines/day) (Table 3-13), and the average CPUE (kg/line) was 82 kg/line (ranged 37-140 kg/line) (Table 3.14).

Table 3-13. Average daily number of trap lines towed from the trap vessels surveyed (N = 3) in October 2023-April 2024 from Dongshan County.

Vessels	Jan	Feb	Mar	Apr	Oct	Nov	Dec
vessels	2024	2024	2024	2024	2023	2023	2023
#1	6	5	6	-	4	6	6
#2	6	6	6	6	6	6	6
#3	6	7	7	-	6	6	6
Average	6	6	6		5	6	6

Table 3-14. CPUE (kg/line) of total capture volumes of the trap vessels surveyed (N = 3) in October 2023-April 2024 from Dongshan County.

Vassals	Jan	Feb	Mar	Apr	Oct	Nov	Dec
Vessels	2024	2024	2024	2024	2023	2023	2023
#1	65	66	62	-	140	102	93
#2	76	77	57	37	112	101	103
#3	73	93	41	-	109	74	71
Average	71	79	53		120	92	89

Based on the logbook data collected from three trap vessels surveyed in Dongshan County from October 2023 to April 2024, the average daily capture volumes (kg/vessel/day) by taxonomic group were estimated (Table 3-15). The most dominant capture taxonomic group was crab, contributed to over 73% (average of 360 kg/vessel/day, N= 3) of the total capture volume. The average fish capture volume was 79 kg/vessel/day, contributing approximate 18% of the total capture volume. The average cephalopod capture volume was 33 kg/vessel/day, contributing approximate 7.6% of the total capture volume (Table 3-15).

#2 #1 #3 Average kg/day % kg/day % kg/day % kg/day % 77.0 Crab 366 348 69.9 365 74.4 360 73.8 79 Fish 89 19.0 76 18.4 73 17.1 18.2 Cephalopod 17 4.1 43 8.8 39 9.8 33 7.6 477 472 100.0 467 100.0 100.0 472 Total 100.0

Table 3-15. Average daily capture volume (kg/day) by taxonomic group and its proportion (%) from trap vessels surveyed (N = 3) from October 2023 to April 2024 in Dongshan County.

Based on the average total fishing days of the three trap vessels in August 2023-April 2024 (188 day/vessel/year, N = 3) (Table 3-16), the total number of registered trap vessels in Dongshan County (N = 65) and the average daily capture volumes of trap fishery by taxonomic group (Table 3-13), the estimated annual capture volume of trap fishery in Dongshan County was 5767.84 t (Table 3-16).

Table 3-16. Estimated annual capture volume of trawl fishery in Dongshan County.

	Average daily capture volume (kg/vessel/day)	Number of vessels	Average fishing days (d)	Estimated capture volume (t)
Crab	360			4399.20
Fish	79	65	188	965.38
Cephalopod	33		100	403.26
Total	472			5767.84

3.6.2 Crabs

As the dominant taxonomic group, crabs were recorded at the species level, including five species, *M. haani*, *P. sanguinolentus*, *C. feriatus*, *C. natator* and *C. philargius*. Their CPUE (kg/line) were calculated and varied by species and by month.

For *M. haani*, high catches (> 40 kg/line) were high in December 2023, January 2024 and February 2024, and low (< 10 kg/line) in April 2024 (Table 3-17; Fig. 3-12). *M. haani* was mainly traded fresh because of the large amount made them impossible to keep alive. Only large sized individuals were sold alive for higher price.

Table 3-17. CPUE (kg/line) of Monomia haani in the trap vessels surveyed (N = 3)in October 2023-April 2024 from Dongshan County.

Vessels	Jan	Feb	Mar	Apr	Oct	Nov	Dec
	2024	2024	2024	2024	2023	2023	2023
#1	27.30	29.35	38.26		16.15	14.32	18.03
#2	43.37	35.55	33.33	9.56	16.18	28.54	48.75
#3	41.77	45.06	18.01		18.42	25.94	27.06
Average	37.48	36.65	29.87		16.92	22.93	31.28

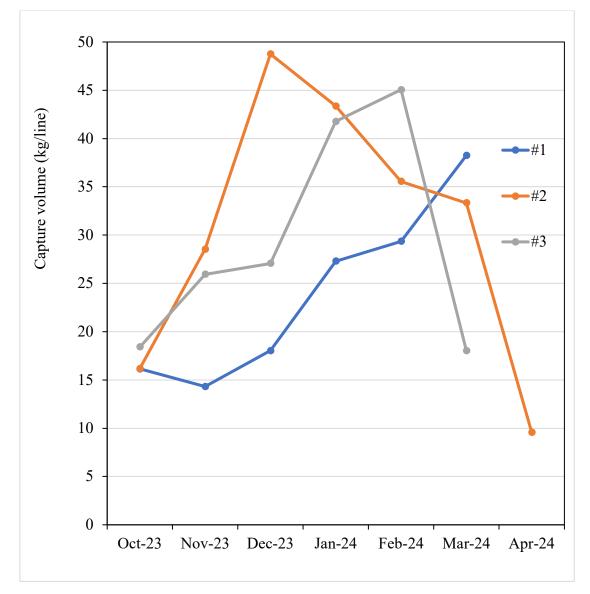


Fig. 3-12. CPUE (kg/line) of *Monomia haani* in the trap vessels surveyed (N = 3) in October 2023-April 2024 from Dongshan County.

For *P. sanguinolentus*, high catches (> 40 kg/line) were in October 2023, and low (< 10 kg/line) in February, March and April 2024, indicating a decline trend from October 2023 to April 2024 (Table 3-18; Fig. 3-13). *P. sanguinolentus* was traded both fresh and alive.

Vessels	Jan 2024	Feb 2024	Mar 2024	Apr 2024	Oct 2023	Nov 2023	Dec 2023
#1	11.41	1.91	0.20		51.66	27.05	24.84
#2	2.21	2.40	0.26	0.00	49.18	25.00	28.27
#3	7.48	6.76	1.94		69.84	21.91	7.45
Average	7.03	3.69	0.80		56.89	24.65	20.19

Table 3-18. CPUE (kg/line) of *Portunus sanguinolentus* in the trap vessels surveyed (N = 3) in October 2023-April 2024 from Dongshan County.

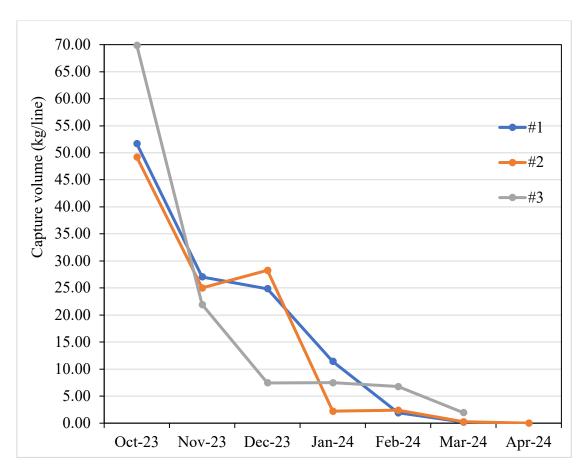


Fig. 3-13. CPUE (kg/line) of *Portunus sanguinolentus* in the trap vessels surveyed (N = 3) in October 2023-April 2024 from Dongshan County.

For *C. natator*, one trap vessel had higher *C. natator* catches than the other two, and high catches (> 40 kg/line) were in October 2023, and low (< 10 kg/line) in March and April 2024, indicating a decline trend from October 2023 to April 2024 (Table 3-19; Fig. 3-14). *C. natator* was traded alive only.

Table 3-19. CPUE (kg/line) of *Charybdis natator* in the trap vessels surveyed (N = 3)in October 2023-April 2024 from Dongshan County.

Vessels	Jan	Feb	Mar	Apr	Oct	Nov	Dec
	2024	2024	2024	2024	2023	2023	2023
#1	13.94	15.02	6.96		44.25	36.73	29.54
#2	7.80	8.77	3.10	4.38	27.13	29.49	10.13
#3	3.89	8.64	1.44		9.86	11.12	16.37
Average	8.54	10.81	3.83		27.08	25.78	18.68

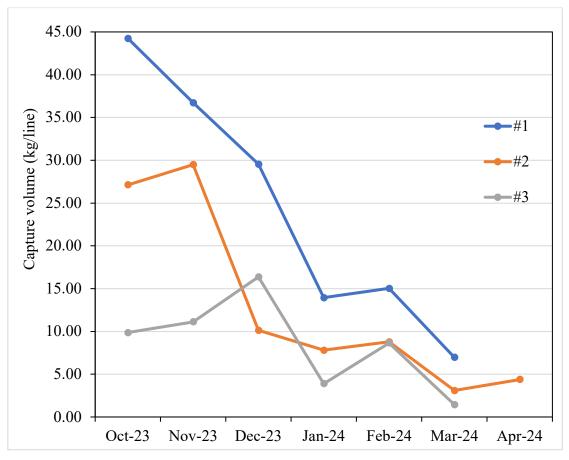


Fig. 3-14. CPUE (kg/line) of *Charybdis natator* in the trap vessels surveyed (N = 3) in October 2023-April 2024 from Dongshan County.

For *C. feriatus*, with the highest price in crab trade, the catches were low, < 2.5 kg/line (Table 3-20; Fig. 3-15). *C. feriatus* was traded alive only.

For *C. philargius*, only one trap vessel (#3) had the species trade, and the other two trap vessels (#1 and #2) did not sold the species. *C. philargius* was traded fresh.

Table 3-20. CPUE (kg/line) of *Charybdis feriatus* in the trap vessels surveyed (N = 3)in October 2023-April 2024 from Dongshan County.

Vessels	Jan	Feb	Mar	Apr	Oct	Nov	Dec
	2024	2024	2024	2024	2023	2023	2023
#1	0.04	0.11	0.14	-	2.45	0.78	0.61
#2	0.30	0.13	0.01	0.78	1.77	0.83	1.07
#3	0.31	0.15	0.06	-	1.36	0.72	1.24
Average	0.22	0.13	0.07	0.78	1.86	0.78	0.97

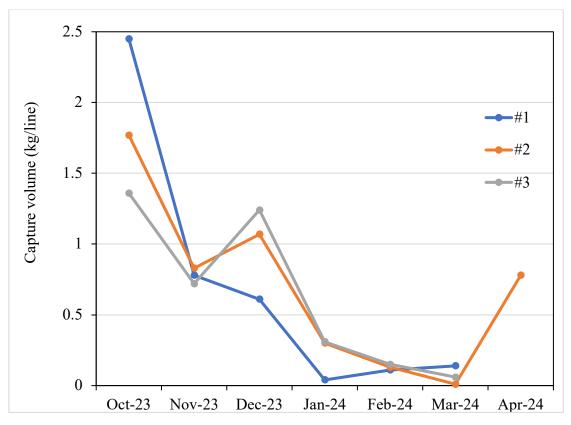


Fig. 3-15. CPUE (kg/line) of *Charybdis feriatus* in the trap vessels surveyed (N = 3) in October 2023-April 2024 from Dongshan County.

3.6.3 Fishes

Based on the three trap vessels surveyed (N = 3) in Dongshan County from October 2023 to April 2024, only a few species with high price or high volume were recorded at the species level, including *Epiniphelus awoara* (only minor *Epiniphelus akarra*), *Evynnis cardinalis* and *Sebastiscus marmoratus*. Fishes were mainly recorded as species group, such as *Lepidotrigla* spp., Synodontidae spp., Sillaginidae spp., Platycephalidae spp., Tetraodontidae spp. (e.g., the genera *Lagocephalus* and *Takifugu*), Muraenesocidae spp., Mullidae spp. and mixed low valued fishes.

Capture volume proportions of fish species and species group in the total capture volumes showed monthly variation (Tables 3-21). Fishes (kg/vessel/day) contributed to 9.6% (in October 2023)-34.4% (in April 2024) of the total capture volumes. *Epinephelus awaora* was as the most dominant fish species, and its capture volume proportions ranged from 3.1% in October 2024 to 10.8% in April 2024. *Evynnis cardinalis* was the second dominant species in fish catches, and its capture volume proportions ranged from 2.3% in October 2024 to 8.6% in February 2024.

Table 3-21. Capture volume proportions (%, kg/vessel/day) of fish species or species groups in the trap vessels surveyed (N = 3) from October 2023 to April 2024 in

Fish	Jan-	Feb-	Mar-	Apr-	Oct-	Nov-	Dec-
species/Groups	2024	2024	2024	2024	2023	2023	2023
Total fish	16.4%	24.4%	25.8%	34.4%	9.6%	14.3%	15.1%
<i>Epinephelus</i> spp.	5.9%	10.6%	9.3%	10.8%	3.1%	3.7%	7.3%
Evynnis cardinalis	6.8%	8.6%	6.7%	7.1%	2.3%	3.4%	2.6%
Tetraodontidae spp.	1.6%	1.6%	3.0%	7.4%	2.8%	2.0%	1.1%
Lepidotrigla spp.	0.3%	0.5%	2.3%	7.9%	0.1%	0.4%	0.2%
Muraenesocidae spp.	0.0%	0.3%	0.2%	0.1%	0.0%	0.2%	0.5%
Sillaginidae spp.	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%
Sebastiscus marmoratus	0.0%	0.2%	0.4%	0.0%	0.0%	0.0%	0.0%

Dongshan County.

Fish	Jan-	Feb-	Mar-	Apr-	Oct-	Nov-	Dec-
species/Groups	2024	2024	2024	2024	2023	2023	2023
Platycephalidae	0.4%	0.9%	0.1%	0.0%	0.0%	0.0%	0.0%
spp.							
Mullidae spp.	0.0%	0.2%	0.7%	0.0%	0.1%	0.6%	0.1%
Branchiostegus	0.0%	0.5%	0.9%	0.0%	0.0%	0.0%	0.1%
spp.							
Saurida elongata	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%
Other high-	0.1%	0.0%	0.1%	0.2%	0.0%	0.5%	0.4%
valued fishes							
Low-valued	1.3%	1.1%	2.1%	0.9%	0.9%	3.5%	2.7%
fishes							

3.7 Biology of *Monomia haani*

Monomia hanni samplings were conducted from trawl catches monthly from August 2023 to April 2024. A total of 2,674 individuals were collected and measured.

3.7.1 Size variation by month

Sizes (carapace width, CW in cm) of *M. haani* ranged from 1.5 cm to 11.4 cm CW, and monthly average sizes ranged from 6.3 cm CW in March 2024 to 7.4 cm CW in September and October 2023 (Table 3-22).

The dominant size classes of *M. haani* in August 2023-April 2024 showed monthly variation (Fig. 3-16):

(1) Proportions (%) of larger sizes (≥ 10.0 cm CW) were the highest in November 2023 at 8.36% and in December 2023 at 8.22%, and no more than 3% in other months.

(2) Proportions (%) of the sizes < 8.0 cm CW (the minimum size for catch regulation in Fujian Province, 2018) in the total catches of *M. haani* were high; > 70% in all months except October 2023. The highest proportion was 89.11% recorded in January 2024, and the lowest proportion was 48.50% in October 2023.

(3) Sizes < 6.0 cm CW (around the size at 50% sexual maturity) were found in all months. The proportions were > 30% in December 2023 (34.3%), January 2024 (33.0%) and February 2024 (31.1%), and the proportions were < 10% in August 2023 (1.7%) and September 2023 (9.2%).

Month	Number	Range of CW (cm)	Average CW (cm)
Jan-2024	303	1.8-11.1	6.6
Feb-2024	306	2.3-11.0	6.7
Mar-2024	295	2.0-11.3	6.3
Apr-2024	274	2.1-10.5	6.9
Aug-2023	355	5.2-10.9	7.3
Sep-2023	284	3.3-10.7	7.4
Oct-2023	266	1.5-10.7	7.4
Nov-2023	299	2.3-10.9	7.0
Dec-2023	292	2.3-11.4	6.9
Total	2,674	1.5-11.4	6.9

Table 3-22. Number of samples and sizes (carapace width, CW, cm) of Monomiahaani from trawl fishery in Dongshan County in August 2023-April 2024.

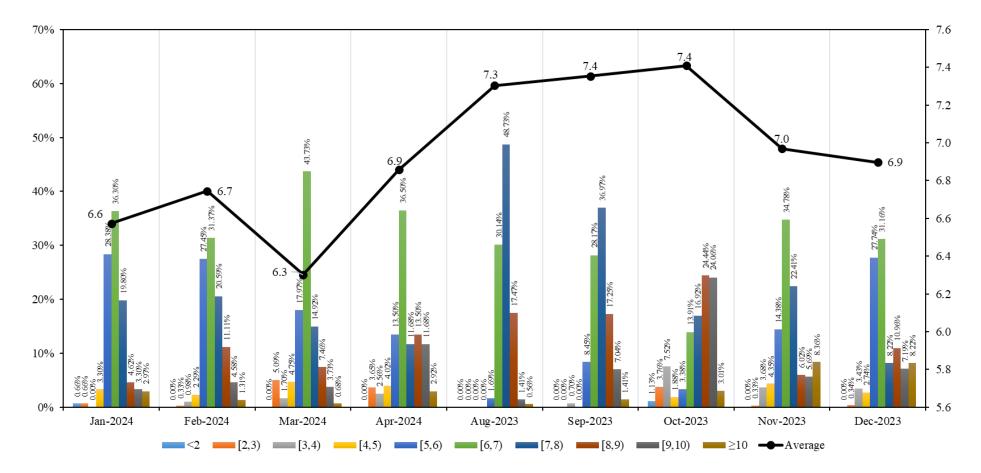


Fig. 3-16. Proportions (%) of different size classes (cm in carapace width) of *Monomia haani* (left Y-axis) and the trends of the monthly average sizes (right Y-axis) in trawl catches of Dongshan County from August 2023 to April 2024.

3.7.2 Size variation by sex

The sizes ranged from 1.8 cm to 9.9 cm CW for females (mean = 6.4 cm CW, SD = 1.1, N = 1321), and from 1.5 cm to 11.4 cm CW for males (mean = 7.4 cm CW, SD = 1.7, N = 1353) (Fig. 3-17). Males were significantly larger than females in CW (W = 499, 101, p < 0.01). Females dominated in size classes of 5.0-8.0 cm CW, and males in size classes of 6.0-11.0 cm CW.

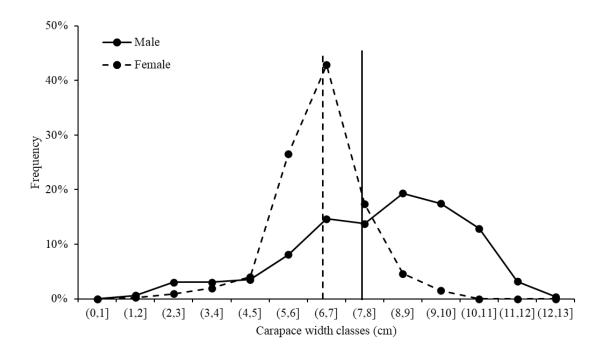


Fig. 3-17. Size (carapace width, CW) frequency (%) of *Monomia haani* males (N = 1353) and females (N = 1321), collected from August 2023 to April 2024. Vertical lines indicate the average sizes of males and females.

3.7.3 Sex ratio

Sex ratios of *M. haani* showed monthly variation. From the 2,674 individuals randomly sampled, the overall sex ratio of *M. haani* was 1.02:1 (male: female, N = 1353 for males, N = 1321 for females), showing no significant difference from 1:1 (p = 0.55). However, there was a significant, either male-bias or female-bias in different monthes (p < 0.05) (Fig. 3-18).



Fig. 3-18. Proportions (%) of males and females of *Monomia haani* (N = 2,674) in trawl catches of Dongshan County in August 2023-April 2024. (Total number of samples showed at the top of the bars)

3.7.4 Spawning season

M. haani females carrying eggs were found in all sampling months except November 2023. The spawning peak was in February and March 2024, determining by the high proportions (%) of number of females carrying eggs/number of females (Fig. 3-19).

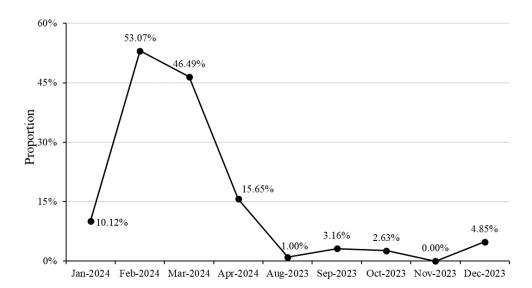


Fig. 3-19. Proportions (%) of *Monomia haani* females carrying eggs in trawl catches of Dongshan County in August 2023-April 2024.

3.7.5 Spawning season from 2018 to 2024 (Phases I-VII)

According to the surveys from 2018 to 2024 (Phases I-VII), *M. haani* females carrying eggs were found in most of sampling months. The proportions of individuals carrying eggs were particularly high from January to March, indicating the consistent spawning peak of *M. haani*. In addition, there may be another spawning peak in August (Fig. 3-20).

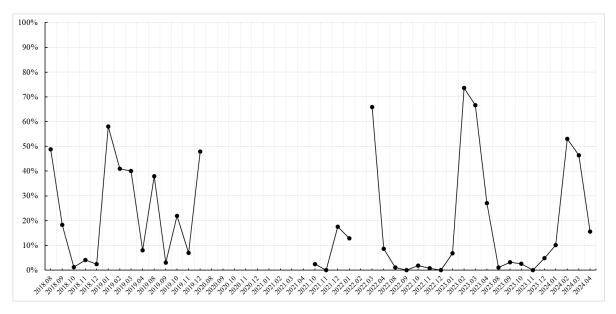


Fig. 3-20. Proportions (%) of *Monomia haani* females carrying eggs in trawl fishery in Dongshan County from 2018 to 2024 (Phases I-VII).

3.7.6 Sizes for female maturity

The minimum size for female carrying eggs was 4.8 cm CW, caught in February, March and April 2024. Females collected in February and March 2023 (the spawning peak) were used to calculate the size at 50% female maturity (CW_{50}), and the estimated CW_{50} was 6.3 cm CW (Fig. 3-21), same as the CW_{50} estimated in Lin et al. (2021).

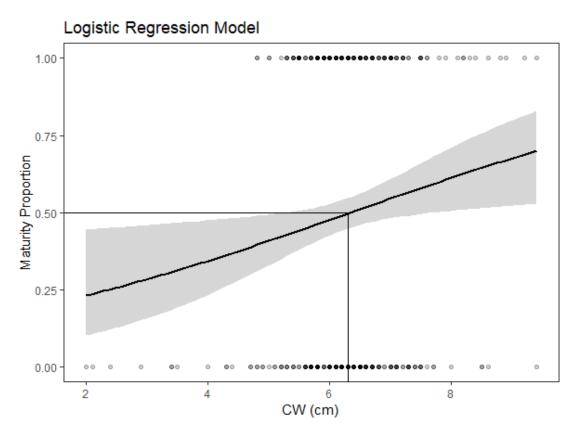


Fig. 3-21. Size (carapace width, CW) at 50% female maturity of *Monomia haani* based on all females sampled in the spawning peak determined, i.e. February and March 2024 (N = 407). The fitting curve was suggested by the black solid line with 95% CI. The circle represented the individuals that were mature (proportion = 1) or not (proportion = 0).

3.7.7 Size-weight and size-size relationships

The relationship of size (carapace width, CW) and weight (whole body weight, BW) for *M. haani* was: BW = $0.07 \times CW^{3.2386}$ (R² = 0.9629; N = 2674); BW = $0.0689 \times CW^{3.2629}$ (R² = 0.9376; N = 1321) for females; BW = $0.0633 \times CW^{3.2747}$ (R² = 0.9633; N = 1353) for males (Fig. 3-22).

The relationship of carapace length (CL)-carapace width (CW) for *M. haani* was: $CL = 0.5686 \times CW - 0.0166$ (R² = 0.9631; N = 2674); CL = 0.5734 × CW - 0.0499 (R² = 0.9451; N = 1321) for females; CL = 0.555 × CW + 0.0056 (R² = 0.9637; N = 1353) for males (Fig. 3-23).

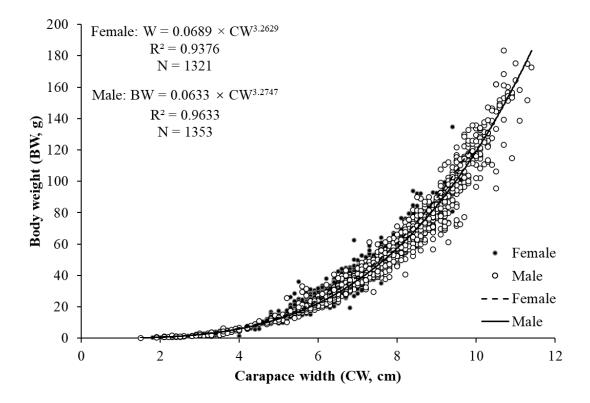


Fig. 3-22. Size (carapace width, CW)-weight (whole body weight, BW) relationship of *Monomia haani* in August 2023-April 2024.

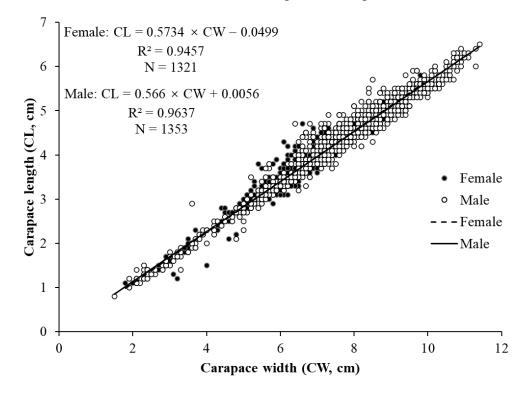


Fig. 3-23. Carapace length (CL)-carapace width (CW) relationship of *Monomia haani* in August 2023-April 2024.

3.8 Biology of *Portunus sanguinolentus*

P. sanguinolentus samplings were conducted from trawl catches of Dongshan County from August 2023 to April 2024. A total of 898 individuals were collected and measured.

3.8.1 Size variation by month

Sizes (carapace width, CW in cm) of *P. sanguinolentus* ranged from 2.0 cm to 19.0 cm CW, and monthly average sizes ranged from 11.4 cm CW in March 2024 to 13.9 cm CW in February 2024 (Table 3-23, Fig. 3-24). The minimum sizes (2.0 cm CW) was found in March 2024.

The dominant size classes of *P. sanguinolentus* showed monthly variation:

(1) Proportions (%) of larger sizes (\geq 15.0 cm CW) were high in February 2024 and December 2023, accounting for 28.57% and 27.63%, respectively, and were less than 10% in January and March 2024.

(2) Proportions (%) of the sizes smaller than 12.0 cm CW (the minimum size for catch regulation in Fujian Province) in the total catch of *P. sanguinolentus* were high; > 50% in March 2024 (53.33%) and April 2024 (59.65%), around 40-45% in January 2024 (40.21%) and August 2023 (41.75%). Low proportions were recorded in February 2024 (9.09%), September 2023 (19.51%), and December 2023 (15.79%).

Table 3-23. Number of samples and sizes (carapace width, CW, cm) of Portunus
sanguinolentus from trawl fishery in Dongshan County in August 2023-April 2024.

Month	Number	Range of CW (cm)	Average CW (cm)
Jan-2024	97	6.8-16.4	12.4
Feb-2024	77	10.2-17.8	13.9
Mar-2024	135	2.0-17.2	11.4
Apr-2024	114	2.1-19.0	11.9
Aug-2023	103	10.1-16.2	12.6
Sep-2023	82	10.0-16.9	13.1
Oct-2023	115	2.5-18.2	12.6
Nov-2023	99	3.4-17.2	12.3
Dec-2023	76	9.5-18.2	13.7
Total	898	2.0-19.0	12.5

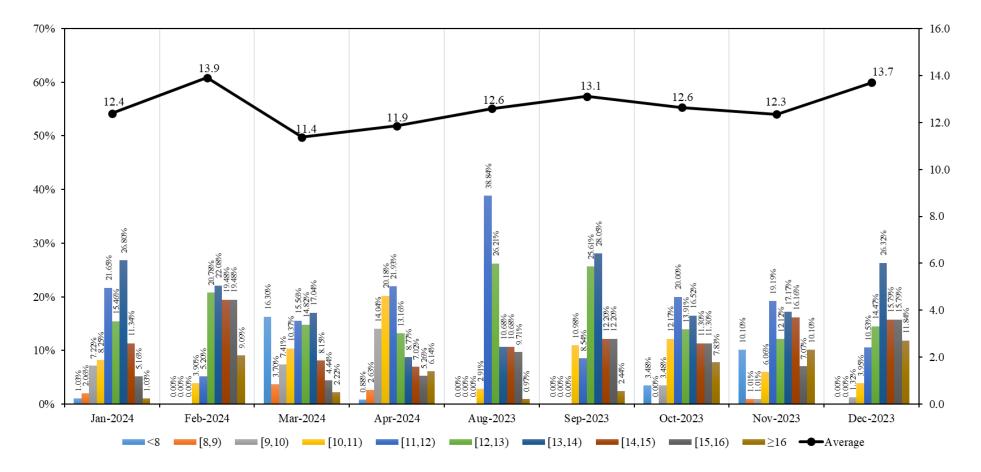


Fig. 3-24. Proportions (%) of different size classes (cm in carapace width) of *Portunus sanguinolentus* (left Y-axis) and the trends of the monthly average sizes (right Y-axis) in trawl catches of Dongshan County from August 2023 to April 2024.

3.8.2 Size variation by sex

The sizes ranged from 3.4 cm to 17.6 cm CW for females (mean = 12.3, SD = 2.0, N = 510), and from 2.0 cm to 19.0 cm CW for males (mean = 12.8, SD = 2.8, N = 388) (Fig. 3-25). Males were significantly larger than females in CW (W = 82,577, p < 0.01).

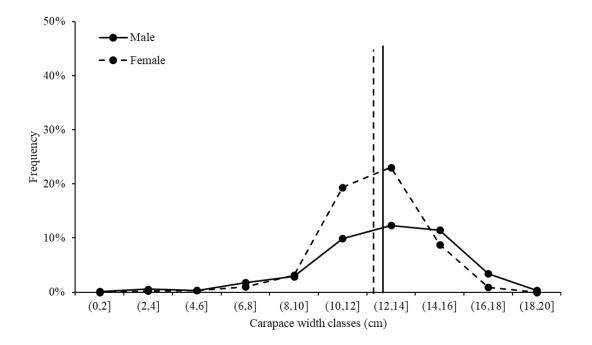


Fig. 3-25. Size (carapace width, CW) frequency (%) of *Portunus anguinolentus* males (N = 388) and females (N = 510), collected from August 2023 to April 2024. Vertical lines indicate the average sizes of males and females.

3.8.3 Sex ratio

Sex ratios of *P. sanguinolentus* showed monthly variation. From the 898 individuals randomly sampled, the overall sex ratio of *P. sanguinolentus* was 1: 1.31 (male: female, N = 388 for males, N = 510 for females), showing a significant femalebias (p < 0.05). Female-bias was significant in January 2024 and from August to November in 2023 (p < 0.05), and male-bias was signicant in April 2024 (p < 0.05). No significant sex bias in December 2023 and February and March 2024 (p > 0.05) (Fig. 3-26).

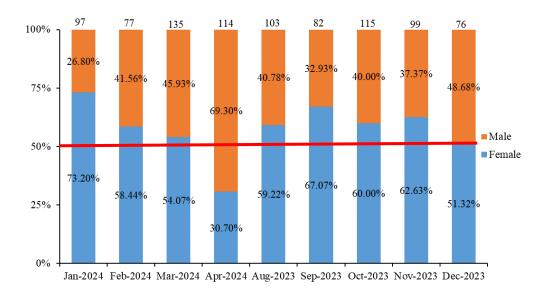


Fig. 3-26. Proportions of males and females of *Portunus sanguinolentus* (N = 898) in trawl fishery in Dongshan County in August 2023-April 2024.
(Number of samples at the top of the bars)

3.8.4 Spawning season

P. sanguinolentus females carrying eggs were found in six sampling months except January 2024, October 2023, and December 2023 (Fig. 3-27). The spawning peak was in February and March 2024, determining by the proportions (%) of number of females carrying eggs/number of females.

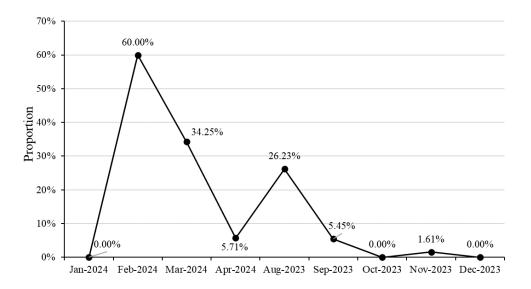


Fig. 3-27. Proportions (%) of *Portunus sanguinolentus* females carrying eggs from trawl fishery of Dongshan County in August 2023-April 2024.

3.8.5 Spawning season from 2018 to 2024 (Phases I-VII)

According to the surveys from 2018 to 2024 (Phases I-VII), the proportions of individuals carrying eggs were high in February-April, indicating the consistent spawning peak of *P. sanguinolentus*. In addition, there may be another spawning peak in August-September (Fig. 3-28).

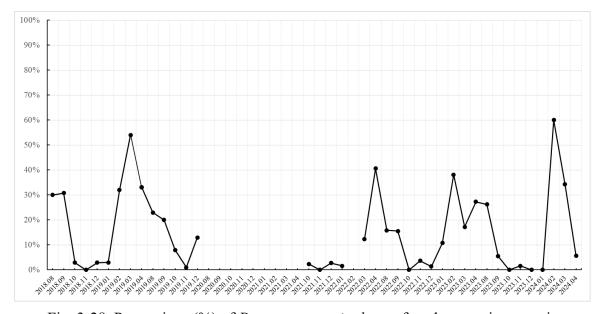


Fig. 3-28. Proportions (%) of *Portunus sanguinolentus* females carrying eggs in trawl fishery in Dongshan County from 2018 to 2024 (Phases I-VII).

3.8.6 Sizes for female maturity

The minimum size for female carrying eggs was 10.2 cm CW for *P. sanguinolentus*, caught in February 2024, which was smaller than 10.7 cm CW in January 2023, but larger than 5.6 cm CW in January 2022, 9.6 cm CW in September 2019 and 8.0 cm CW in 1998 (Ye, 1998).

Females collected in February-March 2024 (the spawning peak) were used to calculate the size at 50% female maturity (CW_{50}), and the estimated CW_{50} was 13.2 cm CW (Fig. 3-29).

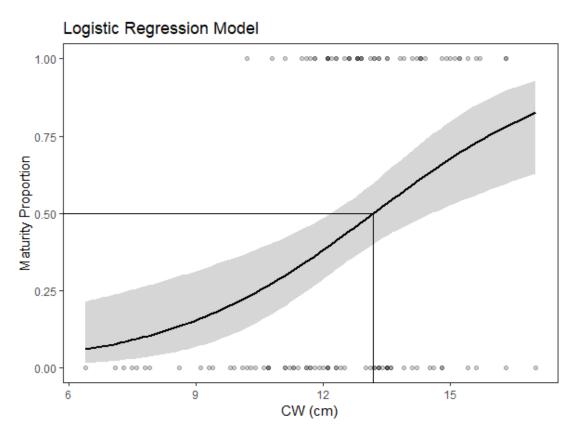


Fig. 3-29. Size (carapace width, CW) at 50% female maturity of *Portunus sanguinolentus* based on all females sampled in spawning peak determined, i.e.
February-March 2024 (N = 118). The fitting curve was suggested by the black solid line with 95% CI. The circle represented the individuals that were mature (proportion

= 1) or not (proportion = 0).

3.8.7 Size-weight and size-size relationships

The relationship of size (carapace width, CW) and weight (whole body weight, BW) for *P. sanguinolentus* was: BW = $0.0431 \times CW^{3.1512}$ (R² = 0.8886; N = 898); BW = $0.0555 \times CW^{3.0481}$ (R² = 0.8572; N = 510) for females; BW = $0.0379 \times CW^{3.2051}$ (R² = 0.902; N = 388) for males (Fig. 3-30).

The relationship of carapace length (CL)-carapace width (CW) for *P.* sanguinolentus was: $CL = 0.4409 \times CW + 0.0713$ (R² = 0.9521; N = 898); $CL = 0.4395 \times CW + 0.0927$ (R² = 0.9329; N = 510) for females; $CL = 0.4421 \times CW + 0.0509$ (R² = 0.964; N = 388) for males (Fig. 3-31).

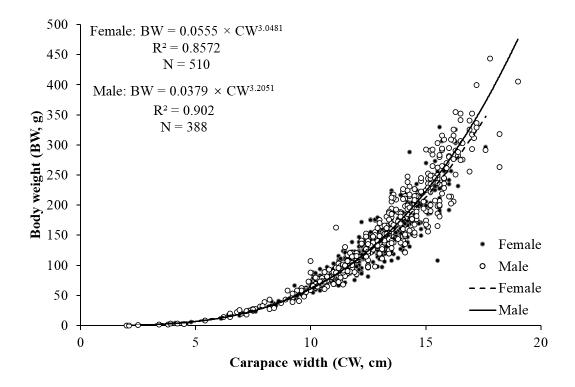


Fig. 3-30. Size (carapace width, CW)-weight (whole body weight, BW) relationship of *Portunus sanguinolentus* in August 2023-April 2024.

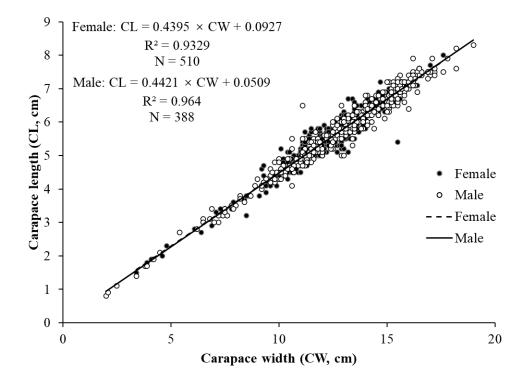


Fig. 3-31. Carapace length (CL)-carapace width (CW) relationship of *Portunus* sanguinolentus in August 2022-April 2023.

4. Significant findings

(1) The species diversity in the southern Taiwan Strait is high. A total of 505 species (at species, genus or family level) were identified from trawl fishery catches from August 2018 to April 2024 (in Phases I-VII), including 393 fishes (77.8%), 89 crustaceans (17.6%) and 23 cephalopods (4.6%)

(2) The species in feed fishes is diverse. A total of 119 species with 76 fishes, 36 crustaceans and 7 cephalopods were identified from September 2023 to April 2024. Among these species, 68 species were only found in feed fishes including 39 fishes, 26 crustaceans and 3 cephalopods.

(3) The most dominant species group in trawl fishery was food fish, accounting for approximately 50% of the total capture volumes. The most dominant species in trap fishery was crab, which accounted for approximate 75%.

(4) Based on the number of registered vessels in Dongshan County, the annual fishing days, and the average CPUE, the estimated annual capture volumes were about79036 t for trawl fishery and 5768 t for trap fishery in Dongshan County, mainly harvested in the southern Taiwan Strait, including Minnan Fishing Ground, Taiwan Bank Fishing Ground and Yuedong Fishing Ground.

(5) The baited trap fishery is more selective compared to the trawl fishery, as evidenced by the low species diversity in the catches, with three crab species (*M. haani*, *P. sanguinolentus* and *C. natator*) comprising the majority of the total catches.

(6) The catches from trap fishery in Dongshan County were traded both fresh and alive, with live catches fetching higher prices, especially for high-value species such as *P. sanguinolentus, C. nataor, C. feriatu,* and *Epinephelus* spp.

(7) The CPUE for *M. haani* in trawl fishery in Dongshan County was higher from August to November (> 1500 kg/vessel/trip and > 200 kg/vessel/day) than from February to April (< 650 kg/vessel/trip and < 100 kg/vessel/day), showing the similar pattern in 2018 2024 (Figs. 4-1 & 4-2).

Fig. 4-1. Monthly average CPUE (kg/vessel/trip) of *Monomia haani* (values shown at the tops of the bars), surveyed at the landing ports of Dongshan County from 2018 to 2024 (Phases I-VII).

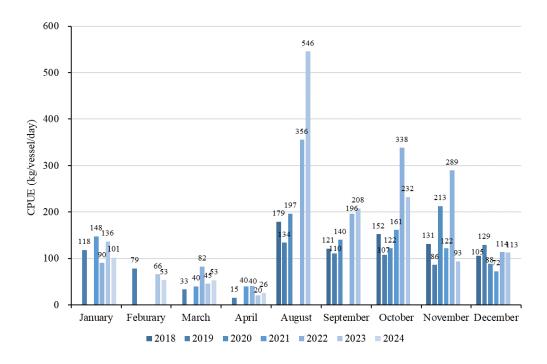


Fig. 4-2. Monthly average CPUE (kg/vessel/day) of *Monomia haani* (values shown at the tops of the bars), surveyed at the landing ports of Dongshan County from 2018-2024 (Phases I-VII).

(8) High proportions of small individuals of *M. haani* (< 8 cm CW) and *P. sanguinolentus* (< 12 cm CW) were recorded in trawl catches, i.e. smaller than the minimum sizes for catch regulation in Fujian Province.

(9) Based on the monthly sampling from 2018 to 2024, one spawning peak before the national summer fishing moratorium was identified and relatively consistent for *M. haani* and *P. sanguinolentus*; in January-March for *M. haani* and in February-April for *P. sanguinolentus*. There may be another spawning peak in August and September for *M. haani* and *P. sanguinolentus*.

(10) Based on the bait volume (6 t/vessel/month) used, the total bait volume used in Dongshan County by trap vessels was estimated to be 2340 t/year (6t, 65 vessels, 6 months fishing (188 day)/year).

(11) The minimum sizes and the sizes at 50% female maturity of *M. haani* and *P. sanguinolentus* in 2018-2024 showed annual variations (Table 4-1). The minimum sizes for female bearing eggs showed a decline, but not observed in the size at 50% female maturity.

Table 4-1. Sizes (carapace width, CW, cm) for female maturity of Monomia haani andPortunus sanguinolentus.

Year	Monom	ia haani	Portunus sanguinolentus		
	CWmin	CW50	CWmin	CW50	
2018	5.5	-	11.6	-	
2019	4.6	6.3	9.6	12.6	
2022	4.0	5.3	5.6	12.8	
2023	4.6	6.0	10.7	15.5	
2024	4.8	6.3	10.2	13.2	

-: no data

CW_{min}: the minimum size for female bearing eggs

CW₅₀: the size at 50% female maturity

5. Acknowledgements

We would like to thank Ocean Outcomes (O2), Qingdao Marine Conservation Society (QMCS) and Society of Entrepreneurs & Ecology Foundation (SEE) for funding support the Phase VII of the FIP. Great thanks to Chenrui Jiang, Chen Wang, and Qing Xu from Fish Biology Laboratory, Xiamen University for sample collection, interviews and laboratory work, to Qisi Cai, Xuwen Fang, and Shengyao Sun from Dongshan Swire Marine Station, Xiamen University for logistics. Great thanks to anonymous captains and crews for logbook data collection.

6. References

- Ahyong, S.T., Chan, T.Y. and Liao, Y. C. 2008. *A Catalog of The Mantis Shrimps* (Stomatopoda) of Taiwan. Taiwan: Taiwan Ocean University Press.
- China Custom Dataset, 2008–2018. Exported Volume and Value of Crab Products from China. China Custom, Beijing.
- Dai, A., Yang, S., Song, Y. and Chen, G. 1986. *Marine crabs of China*. China: Ocean Press. (in Chinese)
- Dong Z.Z. 1988. Fauna Sinica Vol. 4. Phylum Mollusca Class Cephalopode. China: Science Press.
- Huang, M. 2004. Study on feeding habit and nutrient level of *Portunus argentatus*, *P. sanguinolentus* and *Charybdis feriatu* in Fujian sea area. Journal of Oceanography in Taiwan Strait, 23(2):159-166. (In Chinese with English abstract)
- Lin, B.-a, Boenish, R., Kritzer, J.P., Jiang, Y., Wang, S.-l. and Liu, M. 2021. Reproductive dynamics of a swimming crab (*Monomia haanii*) in the world's crab basket. Fisheries Research 236, 105828.
- Liu, M., Chen, X. and Yang, S.Y. 2013. *Marine Fishes of Southern Fujian, China* (Volume 1). China: Ocean Press. (in Chinese)
- Liu, M., Chen, X. and Yang, S.Y. 2014. *Marine Fishes of Southern Fujian, China (Volume 2)*. China: Ocean Press. (in Chinese)
- Liu, R. and Zhong, Z. 1988. *Penaeoid Shrimps of the South China Sea*. China: Agriculture Press.
- Nelson, J.S. 2006. Fishes of The World (4th edition). John Wiley & Sons, Inc.
- Ocean Outcomes, 2018. Fujian Zhangzhou Red Swimming Crab Fishery Improvement Plan. Ocean Outcomes, Portland, Oregon (https://www.oceanoutcomes.org/areasof-focus/fishery-improvementprojects/fujian-zhangzhou-red-swimming-crab/, accessed in May 19th 2020).
- Takashi Okutani, 2015. Cuttlefishes and Squids of the World [New Edition]. Japan: Tokai University Press.
- Windsor, A.M., Mendoza, J.C.E. and Deeds, J.R. 2019. Resolution of the Portunus

gladiator species complex: taxonomic status and identity of *Monomia gladiator* (Fabricius, 1798) and *Monomia haanii* (Stimpson, 1858) (Brachyura, Decapoda, Portunidae). ZooKeys 858:11-43.

- Ye, S. 1998. Fisheries biology of red spot swimming crab, *Portunus sanguinolentus*, on the Minnan-Taiwan bank fishing ground. Marine Fisheries 1998(2):60-63. (In Chinese with English abstract)
- Zhang, W., Liu, M., Sadovy de Mitcheson, Y., Cao, L., Leadbitter, D., Newton, R., et al. (2020). Fishing for feed in China: Facts, impacts and implications. Fish and Fisheries 21(1), 47-62.
- Zhang, Z. 1997. The fisheries and biological characteristics of *Portunus (Amphitrite)* gladiator in south Fujian-Taiwan Bank fishing ground. Marine Fisheries, 1997(1):17-21. (In Chinese with English abstract)

Websites

www.fishbase.org

www.fishdb.sinica.edu.tw

Five publications from this FIP

- Lin, B.-a., Boenish, R., Kritzer, J.P., Jiang, Y., Wang, S.-l., Liu, M. (2021). Reproductive dynamics of a swimming crab (*Monomia haanii*) in the world's crab basket. *Fisheries Research* 236, 105828.
- Boenish, R., Lin, B.-a., Kritzer, J.P, Wilberg, M., Shen, C.-c., Jiang, J., Liu, M. (2021).
 A bioeconomic approach towards improved fishery management of *Monomia haanii* in the southern Taiwan Strait, China. *Fisheries Research* 240, 105969.
- Lin, B.-a, Jiang, Y., Boenish, R., Xu, Q., Liu, M. (2021). Population, reproductive and fishery dynamics of spotted box crab (*Calappa philargius*), a new clawonly fishery species, in the southern Taiwan Strait, China. *Frontiers in Marine Science* 8, 751790.
- Lin, B.-a, Jiang, Y., Liu, M. (2023). Population structure and reproductive dynamics of the ridged swimming crab *Charybdis natator* in the southern Taiwan Strait of

China: significant changes within 25 years. *Frontiers in Marine Science* 10, 1056640.

Liu, C.-L., Zhang, X., Fan, E.-Y., Wang, S.-L., Jiang, Y., Lin, B.-A., Fang L., Li, Y.-Q., Liu, L.-B., Liu, M. (2024). Species diversity, ecological characteristics and conservation measures of seahorses (*Hippocampus*) in China's waters. Biodiversity Science, 32, 23282. (in Chinese with English abstract)