1 Original Manuscript

2 Submitted to PeerJ

3

- 4 Catch composition and risk assessment of two fishing gears used in small-scale
- 5 fisheries of Bandon Bay, the Gulf of Thailand

6

7 Tuantong Jutagate¹ and Amonsak Sawusdee²

8

- ⁹ Faculty of Agriculture, Ubon Ratchathani University, Warin Chamrab, Ubon Ratchathani,
- 10 Thailand
- ² School of Science, Walailak University, Thasala, Nakhon Si Thammarat, Thailand

12

- 13 Corresponding author:
- 14 Amonsak Sawusdee
- 15 Thasala, Nakhon Si Thammarat 80161, Thailand
- 16 Email address: samonsak@wu.ac.th

17

18

Abstract

- 19 We examined catch compositions and vulnerability of target and bycatch species in two
- 20 fishing gears, namely the bottom-set gillnet and collapsible crab trap, used in small-scale
- 21 fisheries of Bandon Bay, Suratthani Province, Thailand Both gears mainly target the blue
- swimming crab (BSC) *Portunus pelagicus*, and together contribute about half of Thailand's
- 23 annual BSC catch of around 2.5 thousand tonnes. Field sampling was conducted from January
- to November of 2018. Specimens from bottom-set gillnets and collapsible crab traps
- comprised 111 and 118 taxa, respectively. Of these, 26 and 27 crab species and 41 and 46 fish
- species were collected by gillnets and traps, respectively. The index of relative importance of
- BSC was higher in gillnets (48.8 \pm 16.6%) than in traps (25.0 \pm 15.5%), where another swimming
- crab (*Charybdis affinis*) was more common. Cluster analysis revealed that catch compositions
- were seasonal and differed between the two monsoonal seasons, i.e., northeast monsoon

(October to February) and southwest monsoon (May to September), and the transition period (March and April). Potential impact from both fishing gears on various stocks was assessed by standard productivity and susceptibility analysis (PSA). Vulnerability scores of the BSC stock as the main target species suggested it was at moderate risk, as assessed by PSA. The impacts of both gears to stocks of the other species in Bandon Bay showed either low or moderate risk. Ten fish stocks, including two stingrays, six species of sole and two other bony fishes, were near the threshold of high risk from gillnet fishing.

37 38

30

31

32

33

34

35

36

Keywords: Bottom set gillnet, Collapsible crab trap, Index of relative importance, Productivity and susceptibility analysis

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

39

Introduction

The Gulf of Thailand (GoT) is one of the world's most productive large marine ecosystems, and it mostly lies within the Thai territory. The total catch from the GoT was around 1.03 million tonnes in 2018, which represented 73% of the country's marine harvest and 42% of the total fisheries and aquaculture production for the year (Fisheries Development Policy and Planning Division, 2020). Although the primary fishing targets of marine capture are pelagic and demersal finfishes, three other aquatic animals support valuable fisheries: Indian squid *Uroteuthis duvauceli*, banana prawn *Penaeus merguiensis* and blue swimming crab (BSC) Portunus pelagicus (Kulanujaree et al., 2020). Marine fisheries can be characterized as commercial and small-scale fisheries (SSF), of which the latter contributes about 15% of the total marine harvest in Thailand annually (Derrick et al, 2017). Lymer et al. (2008) mentioned that while the commercial fisheries target multiple species with all gear types, SSF in Thailand, though inevitably capturing a mix of species, are more focused on their target species. This specialization is reflected by the names of the gear; for example, mackerel gillnet, squid falling net and shrimp trammel net. Among the gears used in SSF, two types target crabs (particularly BSC), which are bottom-set gillnets and collapsible crab traps. These two fishing gears, hereafter "gillnets" and "traps", are also used for BSC fisheries elsewhere in the south of Thailand and in other countries of Southeast Asia (Prince et al., 2020). In

Thailand, the material used for both gears is 2.5 inch (6.4 cm) stretched mesh. Gillnets contain several layers of this mesh, each layer with length of around 180 m and height of 1.25 m. Trap frames are made from aluminum wire with dimensions of 35 x 55 x 17 cm.

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

Bandon Bay (9° 20' 00" N, 99° 25' 00" E; Figure 1) is in the south of Thailand and home to more than 130 fish species and more than 210 species of other aquatic animals (Sawusdee, 2010). The bay area is 477 km², with 120 km of coastline and mean depth of 2.9 m. Weather patterns are influenced by the northeast and southwest monsoons, which are present almost year-round. Its waters are very productive, owing in part to nutrient inputs from the Tapee River and 18 other river channels (Jarenpornnipat et al., 2003; Sawusdee 2010). A 2020 fisheries census in Bandon Bay reported 12,120 fishers, of which 65% were small-scale fishers, operating vessels smaller than 10 gross-tonnes and fishing within 3 nautical miles from shore. The total estimated catch from this bay in 2019 was 31,291 tonnes from almost 30 fishing gear types targeting various groups of aquatic animals (Surat Thani Provincial Fisheries Office, 2020). The substrate of mixed mud, clay and sand, as well as a beach that reaches up to 2 km into the sea, make the bay suitable for numerous crustaceans and other benthic invertebrates, which constitute about 45% of landings from Bandon Bay (Sawusdee 2010; Plongon & Salaenoi, 2015). These are reasons the crustaceans are heavily targeted by smallscale fisheries here, making Bandon Bay the primary fishing ground for this aquatic animal group. Of the annual total catch of BSC in Thailand, which averages around 2.5 thousand tonnes, approximately half is from the SSF in Bandon Bay (Fisheries Development Policy and Planning Division, 2020. Moreover, this fertile bay is suitable for blood cockle cultivation, and some areas of the bay are dominated by extensive coastal aquaculture of this clam (Jarernpornnipat et al., 2003; Kritsanapuntu & Chaitanawisuti, 2019).

Fishing gears used in SSF by their nature impact the near-shore ecosystem, where various species of fishes and other aquatic animals reside, either permanently or temporarily. Small-scale fisheries are mostly indiscriminate and may have wide variation in bycatch numbers and rates, and thus, inappropriate operation of these fisheries may negatively impact the abundance, distribution and species composition of vulnerable taxa (*Pinnegar & Engelhard*, 2008; *Chester & Michel*, 2011). Moreover, the SSF may indirectly impact the ecosystem through habitat degradation, which could cause in decline of megafauna, e.g.,

marine mammals, sea turtles and chondrichthyans (*Temple et al.*, 2018). Chester & Michel (2011) reported that ecological impacts by SSF varied according to gear types and habitat characteristics, but that the small size of fishing vessels employed would limit the range of the impacted area. Though SSF are recognized as having low ecological impact on coastal marine resources (*Pauly*, 2006), they still require appropriate management. Importantly, ensuring the sustainable utilization of resources by these fisheries also means supporting the livelihoods and food security of local fishing households (*Smith et al.*, 2021). Managing SSF, however, is quite complicated due to the complexity of fishing patterns, which are related to, for example, biogeographic features of the fishing areas, resource availability and fishing gears used (*Coronado et al.*, 2020). Also, neither catch nor effort from SSF is included in the official reporting system, making stock assessment difficult and imprecise (*Pita et al.*, 2019; *Song et al.*, 2019). Therefore, evaluation of the impact of fishing using a semi-quantitative approach (i.e., Level-2; *Hobday et al.*, 2011) is recommended for SSF (*Pita et al.*, 2019).

Similar to most of the small-scale fisheries elsewhere, data on the impacts of gillnets and traps used by SSF in Bandon Bay are incomplete, even though the fishery significantly contributes to the country's production of BSC. Shester & Micheli (2011) revealed that not only the marine megafauna (mammals, seabirds, and turtles) are threatened by SSF, but also a number of non-target species are impacted by SSF, which have discard rates higher than commercial fisheries. Capacity to withstand fishing intensity varies by species (*Purcell et al., 2018*); thus, the vulnerability of both target species and non-target species must be known and integrated into fisheries management. This study, therefore, (i) examines the catch composition from gillnets and traps used by SSF in Bandon Bay, and (ii) evaluates the ecological risk of species vulnerable to each type of net. This work also complies with the UN's announcement of 2022 as Year of Artisanal Fisheries and Aquaculture and the indicator of UN-SDG-14 in securing sustainable small-scale fisheries.

Materials & Methods

Sampling stations and protocol

The Institute of Animals for Scientific Purposes Development approval for this research (U1-04118-2559). Field experiments were approved by Agricultural Research Development Agency (public organization) (project number: PRP6405031070). Fourteen (14) sampling stations were established throughout Bandon Bay, along three longitudinal transects perpendicular to the shoreline and 2 additional stations at the mouth of the bay. All stations were at least 3 km apart (Fig. 1). Sampling was conducted once a month in every sampling station, from January to November 2018, during a spring tide and using the same sampling protocol. Sampling in December was skipped because of the effects of tropical cyclone "Plabuk". Gillnets and traps used in the field sampling are as explained in the Introduction. On each sampling day at 17:00, three (3) tiers of gill nets and 90 traps were deployed at each sampling station and soaked for 12 hours before being recovered. All catches were taken back to the fish landing sites.

Catch composition analysis

Catches were ice-packed individually and taken back to Walailak University, 160 km from Bandon Bay. At the laboratory, the catches from each station and gear were identified taxonomically (in some cases only to genus or family level), and then weighed and counted. Taxonomy was based on *Nelson* (2016) and FishBase (www.fishbase.org; *Froese & Pauly*, 2021) for fishes and *Carpenter and Neim* (2001) and SeaLifeBase (www.sealifebase.org; *Palomares & Pauly*, 2021) for other aquatic animals.

The index of relative importance (%IRI) (*Caddy & Sharp*, 1989) was used to express the contribution of individual species in the catches in each month, and calculated as

140
$$%IRI = 100 \times [(\%W_i + \%N_i) \times \%F_i] / [\sum ((\%W_j + \%N_j) \times \%F_j)]$$

where %W and %N are the percentages by weight and number of each species *i* in the total catch, %F is the percentage of occurrence of each species in the total sample, and the denominator is the total of all species *j*. Mann-Whitney U test was applied to examine whether the %IRI of BSC was significantly different between gears. Similarity of the 20 first species of highest %IRI of each gear among sampling months was graphically expressed by dendrogram

cluster analysis, using Bray-Curtis dissimilarity matrix and average method. Analysis of similarity (ANOSIM) was used to test similarity among clusters. The data analysis was conducted by using R (*R core team*, 2021).

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

148

146

147

Risk assessment

Productivity Susceptibility Analysis (PSA; Hobday et al., 2011), which is a practical semi-quantitative vulnerability assessment tool (Hordyk & Carruthers, 2018; Lin et al., 2020; Faruque & Matsuda, 2021) was used for assessing the risk of individual stocks from the BSC fisheries in Bandon Bay. The PSA consists of the attributes of two characters: (i) productivity, for determining the rate at which the species can recover from fishing and (ii) susceptibility, for determining the impact to the species caused by fishing. There were seven productivity attributes and four susceptibility attributes used in this study (Table 1). For each species, the data and information for each productivity attribute was from desk study of relevant reports from the GoT and from FishBase (Froese & Pauly, 2021) and SeaLifeBase (Palomares & Pauly, 2021). In cases where age and size at maturity were not available but growth parameters were, the models were calculated using estimates of the attributes, as proposed by Froese & Binohlan (2000). Meanwhile, the information for each susceptibility attribute was from the observations and results of field sampling for catch composition, desk study, and meetings with experts (i.e., fishery scientists and fishers). The obtained data and information was converted to a rank score (Table 1), where 1 is high productivity or low susceptibility, 2 is medium productivity or susceptibility, and 3 is low productivity or high susceptibility (Hordyk & Carruthers, 2018). It is worth noting that the rank scores for productivity attributes are adjusted to be suitable for tropical aquatic taxa (FAO, 2014). A focus group discussion among the researchers, fisheries scientists and fishers was conducted to discuss the rank scores of the catches, and in particular, maximum and maturity sizes, selectivity of gear types, as well as abundance and occurrence of individual species in the studied area. This activity was included in the study so that fisheries scientists and fishers could provide expert judgment, fisheryspecific experienceand ecological knowledge relevant to each attribute (Hobday et al., 2011). The total vulnerability (V) or risk score was then calculated by

$$V = \sqrt{P^2 + S^2}$$

where P is the overall productivity score (i.e., arithmetic mean of the productivity attributes) and S is the overall susceptibility score (i.e., geometric mean of the susceptibility attributes). The *V score* ranges between 1.41 and 4.24; values lower than 2.64 and above 3.18 are considered low and high vulnerability, respectively, while values in between indicate medium vulnerability (*Hobday et al., 2011*; *Hordyk & Carruthers, 2018*).

A data quality score (Table 2) was also estimated for each species for interpretation of the vulnerability scores (*Patrick et al., 2010*; *Ormseth & Spencer, 2011*; *Faruque &Matsuda, 2021*). The mean quality score of P and S was interpreted as high (< 2), medium (\ge 2 and <3), or low (\ge 3). Difference in *V scores* between the two fishing gears for each species (or higher taxon) was tested by Mann-Whitney U test. All statistical tests were conducted by using R (*R core team, 2021*).

Results

In total, the sampled animals comprised 7,880 individuals with a weight of 246,747 g. Catch compositions by percentages in numbers and weight are shown in Figure 2, meanwhile percentages of individual species are presented in Table 3. There were 111 and 118 species of fish and other aquatic animals caught by gillnets and traps, respectively (Table 3). No endangered, threatened or protected (ETP) species were included in the catch composition throughout the study. Similar groups of marine invertebrates were caught in both fishing gears, albeit with some difference at genus or species levels. There were 26 and 27 species of crab (Families Diogenidae, Dorippidae, Leucosiidae, Matutidae, Epialtidae, Galenidae, Parthenopidae, Portunidae, Menippidae Galenidae Macrophthalmidae and Varunidae) caught by gillnets and traps, respectively. Other marketable aquatic animals caught by both gears included gastropods, bivalves, cephalopods, mantis shrimps and sea cucumbers. Over 40 fish species, both teleost and elasmobranch, a were collected throughout the study (41 by gillnets and 46 by traps). Some species groups were retained in a particular gear, for example, sting rays were caught only by gillnets, while gobies were found only in traps.

The five most commonly caught species by number in gillnets were gastropod *Murex* sp. (26.6%), followed by BSC (22.2%), crab *Dorippe quadridens* (7.0%), sea urchin *Temnopleurus* toreumaticus (6.5%) and crab Macrophthalmus sp. (4.9%). Meanwhile, three out of the five most common species, by number, in traps were crabs, *Charybdis affinis* (37.2%), BSC (11.1%), and *D*. quadridens (4.1%), followed by T. toreumaticus (1.6%) and hermit crab Clibanarius infraspinatus (1.6%). In terms of weight, BSC was ranked first for both gears, and contributed over 50% in gillnets and about 27% in traps. Another species of swimming crab, C. affinis, was also common in traps; if its weight was added with BSC, their percentage would be over 50% of the catch. Notably, the two species in each gear with the highest overall mean %IRI had values over 15%; meanwhile, the remaining taxa were less than 5% (Table 3). Overall means (± SD) of %IRI for BSC in gillnets (48.8 \pm 16.6%) and traps (25.0 \pm 15.5%) were statistically different (Mann-Whitney U test, P = 0.005; Figure 3). Dendrogram clusters for each month showed that BSC was by far the dominant species in terms of %IRI in gillnets, followed by *Murex* sp. (Figure 4a). However, in traps, *C. affinis* was ranked first in %IRI, followed by BSC (Figure 4b). Catch compositions differed seasonally and were separated into three distinct clusters for each gear (ANOSIM, P < 0.02). Higher numbers of species were found in the catch during summer (March to April) in both gears. For gillnets, BSC dominated the catches during the northeast monsoon (October to February), while *Murex* sp. showed higher %IRI during the southwest monsoon (May to September). Meanwhile, highest %IRI for BSC in traps was observed during the southwest monsoon. Data quality scores for the productivity attributes ranged between 1.0 and 4.0, with an

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

Data quality scores for the productivity attributes ranged between 1.0 and 4.0, with an average of 1.8 ± 1.4 , implying relatively high quality of information used to interpret the vulnerability of stocks of fish and other aquatic animals to the Bandon Bay BSC fisheries. Vulnerability (V) scores of individual species for both gears are presented in Table 3. The overall V score ranged from 1.81 to 3.16 (2.78 ± 0.28) for gillnets and from 1.70 to 2.93 (2.29 ± 0.33) for traps. Results indicated that the BSC was at moderate risk (V=2.86) from both gears, for which the P and S scores were 1.14 and 2.62, respectively. Eighty (80) species were at moderate risk from the gillnet fishery; meanwhile, the majority of species that are catchable by trap (96 out of 118 stocks) faced low risk from the trap fishery, i.e., V score lower than 2.64.

Although no species were rated as high risk from BSC gillnets or traps in Bandon Bay, there were 10 fish species with high V scores (i.e., near the threshold of 3.18) in the gillnet fishery. These fishes included two elasmobranchs (Himantura imbricate and Maculabatis gerrardi), two bony fishes (Muraenesox cinereus and Hexanematichthys sagor) and a group of sole species (Family Soleidae and Cynoglossidae). A graphical PSA of selected individual stocks and stock-groups, which are marketed species, from gillnet and trap fisheries in Bandon Bay is presented in Figure 5. Results (Figure 6) revealed that there were non-significant differences between gears in levels of risk to bivalves (Mann-Whitney U test, P = 0.55), cephalopods (Mann-Whitney U test, P = 0.47) and mantis shrimp (Mann-Whitney U test, P = 0.05). However, significant differences were found for gastropods (Mann-Whitney U test, P = 0.001), prawns (Mann-Whitney U test, P = 0.04), crabs (Mann-Whitney U test, P = 0.001), sea cucumbers (Mann-Whitney U test, P = 0.03), and bony fishes (Mann-Whitney U test, P = 0.01), for which more risk was found from the gillnet fishery. By averaging the V scores of both fishing gears (Table 3), results revealed that 57 species were at medium risk, as their V scores were between 2.64 and 3.18, from the SSF of Bandon Bay.

Discussion

Results of this study confirm the indiscriminate nature in terms of catch composition of the small-scale gillnet and trap fisheries of the productive Bandon Bay in the Gulf of Thailand. Risks by SSF are overlooked in assessments, which generally focus on commercial fisheries. This is unsurprising, as the uneven history of fisheries science was not conceived for multi-species SSF (*Smith et al., 2021*). Similar to most of the small-scale coastal fisheries elsewhere in the tropics, catches from the SSF of Bandon Bay are multi-species due to the productivity of the area and diversity of aquatic animals inhabiting this fishing ground. The roughly 100 species captured from both fisheries in Bandon Bay is considerably lower than the 170 species collected from the gillnet SSF in Pattani Bay, lower Gulf of Thailand (*Fazrul et al., 2015*). Meanwhile, there were 45 and 77 species of fishes and other aquatic animals collected from gillnet and trap SSF (which also target BSC) at Phu Quoc Island, Vietnam (*Ha*

et al., 2015); however, no bivalves, starfish, mantis shrimp, horseshoe crabs or sea cucumbers were mentioned in the report. The number of crab species in SSF in Thai waters has ranged between 17 and 27, in which the mud crab Scylla spp. and crab Charybdis spp. are also market-valued species and can be caught in substantial numbers, comparable to BSC (Fazrul et al., 2015; Kunsook & Dumrongrojwatthana, 2017; this study). Attempts to reduce the non-targeted catch in these two fishing gears include a proposal to not allow gillnets to be operated in near-shore areas for a fishery in Indonesia (Supadminingsih et al., 2018). Boutsan et al. (2009) reported that a trap with escape vents could potentially reduce the number of non-target species; however, the number of the targeted BSC captured by the trap with escape vents was about three times lower than the conventional one, which would likely not be accepted by fishers.

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

Crabs, in particular BSC, remained a high proportion of the catch in both gears throughout the study period in Bandon Bay. It was observed during our samplings that most of the BSC caught were larger over 10 cm in outer carapace width (OCW), which is slightly above the size at 50% maturity of about 9.5 cm OCW (Nilrat et al., 2019). The peak BSC catch in BSC fisheries in South Sulawesi, Indonesia, was observed from May to September and not during the two rainy seasons, which are from January to April and from November to December (Wiyono & Ihan, 2018). In this study, the %IRI of BSC in traps dropped during the northeast monsoon (November to February); meanwhile, %IRI of BSC in gillnets dropped from April to June. Because Bandon Bay is relatively shallow, water turbulence during the monsoon would make the crabs and other aquatic animals less gregarious and increase habitat rugosity, factors which are both negatively correlated with catchability by traps (Robichaud et al., 2000). Moreover, the turbulence itself might place the trap in an inappropriate position, in particular the entrance, and lead to lower catches of all species quantitatively and qualitatively. Gillnets, on the other hand, would still continue to function during the monsoon season due to the length of the nets and no significant difference in catches by different hanging ratios of the nets (Gray et al., 2005). The higher number of species captured during summer in both gears, though many were non-target species, could be due in part to the good conditions for fishing operations. Variation in species composition between the monsoon and non-monsoon seasons was also observed in gillnets and traps in the lower and eastern Gulf of Thailand, respectively

(Fazrul et al., 2015; Kunsook & Dumrongrojwatthana, 2017). Fewer fish species in catches during the monsoon could be caused by freshwater discharge to the bay, which forces marine fishes further offshore (Jutagate et al., 2010; 2011).

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

Using PSA to assess the impacts of fisheries to fish stocks has increased recently, in particular for multi-species fisheries, where information on stock status of non-targeted species is always lacking or limited (Hordyk & Carruthers, 2018; Lin et al., 2020; Faruque &Matsuda, 2021). By screening the high or relatively high-risk species from both gears, through PSA, these species can be then taken into consideration for assessing their stock status, accompanied with the main target species, for further implementing appropriate measures to sustain the fisheries. Although several attributes have been added to PSA recently, such as in extended PSA (Hordyk & Carruthers, 2018) and revised PSA (Grewelle et al., 2020), we chose to use the standard PSA (Hordyk & Carruthers, 2018) in this study since we were able to integrate available attribute data with local knowledge from fishers. Their knowledge is very crucial for the susceptibility attributes and also useful for identifying important local differences in stock susceptibility to fishing (Jara et al., 2022). Robinson et al. (2014) reported a good understanding and homogenous knowledge of susceptibility to fishing gears displayed by fishers that operate the same fishing gear, have access to the same fishing ground and have similar economic background. Moreover, rank scores of susceptibility generated from documents, by the research team, and by other scientists were identical. For productivity attributes, Lin et al. (2020) mentioned that although maximum size and size at 50% maturity may show autocorrelation, they must both be kept in the model since they describe distinctly different biological components of a species' life history. The data quality scores for these attributes of BSC and some other aquatic animals (e.g., mud crab, prawns, sea cucumbers, some fishes) were available because of their market value, and hence, have received more study. However, as in other tropical marine fisheries, data quality scores were limited for species with little or no market value, including crabs, other aquatic animals and fishes (Lin et al., 2020; Faruque & Matsuda, 2021).

Gillnets and traps cause considerably lower holistic environmental impacts than active fishing gears (*Uhlmann & Broadhurst*, 2015). Vulnerability of the BSC stock, as the main targeted species, to gillnets and traps in SSF of Bandon Bay was at a moderate level and

similar to the BSC stock of Phu Quoc Island, Vietnam (Ha et al., 2015). Meanwhile, the stocks of fishes and other aquatic animals in Bandon Bay were more vulnerable to gillnets than traps. This is due to the fact that the discard mortality by gillnets is relatively high, with a reported mean of about 40% across the range of species, and is considerably lower in traps (Uhlmann & Broadhurst, 2015). The low to moderate risk found for almost all species is likely due to their potential to recover their stocks, with recovery capacity ranges between 1 and 5 years for most tropical fishes (Mohamed & Veena, 2016). Mohamed et al. (2021) reported that most of the fish stocks along the coast of India were resilient-yet-vulnerable, and most crustaceans showed high resilience. Higher vulnerability of the two stingrays in this study is due to their life history; like most elasmobranchs, they have low fecundity, exhibit ovoviviparity, and are carnivorous (Frisk et al., 2001; Mohamed et al., 2021). Productivity attributes also make M. cinereus and H. sagor more vulnerable because of their elongate form with high maximum size and trophic level for the former and low fecundity, late maturity and carnivorous diet of the latter (Kottelat, 2013; Sang et al., 2019; Froese & Pauly, 2021). On the other hand, high risk to soles by gillnets is largely caused by their susceptibility, resulting in either moderate or high risk scores for all attributes.

A mesh size regulation (not less than 2.5 inch) is currently applied to both fishing gears. However, this regulation may less effective for gastropods and crustaceans since they are always entangled in the gillnets (*Fazrul et al.*, 2015; *Faruque & Matsuda*, 2021). Other relevant measures to both SSF in Bandon Bay are a spatial closure and efforts at stock enhancement. The goal of the spatial closure is to create fishery refugia, and was established at Sed Island in 2021 (Figure 1). It is an attempt to restore the stocks of many species in Bandon Bay, because the area is important nursery habitat for a number of fishes and other aquatic animals, including the BSC (*Thongkhao*, 2020). In terms of enhancement, stocking has focused on the BSC through the "crab bank" project to preserve and disperse eggs post capture. The aim is to increase recruitment of BSC, which consequently sustains the gillnet and trap SSF in Bandon Bay.

Conclusions

In Bandon Bay, over 100 species of fishes and other aquatic animals were caught in gillnets
and traps, confirming the high productivity of this fishing ground and the multi-species nature
of the SSF (Sawusdee, 2010). Significantly higher %IRI of BSC compared to other species in
both gears almost year-round suggest an abundance of BSC and the relative specificity of the
gears. The PSA indicated low to moderate risk from BSC fisheries to the stocks of other
species in the catches, although stingrays and eight (8) bony fishes were were near the
threshold of high risk from gillnet fishing, implying that both fishing gears are not excessively
impactful and are appropriate for use by the SSF of Bandon Bay. Nevertheless, risk may be
underestimated by applying PSA, as cautioned by Grewelle et al. (2020), and this should be
taken into consideration when implementing the results for fisheries management. Catch
monitoring and stock assessment of both targeted and non-targeted species should be regularly
conducted (Lin et al., 2019; Prince, 2020). Impacts from other stressors (e.g., climate change,
sea ranching and land uses) should be taken into consideration to sustain the fishery resources
and the fisheries in Bandon Bay.

Acknowledgements

We are grateful to the 60 fishers and 15 fishery scientists for their involvement and sharing their knowledge in our PSA study.

Conflict of interest

The authors declare no competing interests.

Author contribution

- 371 TJ and AS equally contributed in Conceptualization, Methodology, Analysis, Visualization,
- 372 Original Draft, Writing –Review & Editing and Funding Acquisition.

References

- **Caddy JF, Sharp GD. 1986.** An ecological framework for marine fishery investigations.
- 376 (Technical Paper 283). Rome, Italy: FAO Fisheries.

3//	Carpenter KE, Niem VH. 2001. FAO Species Identification Guide for Fishery Purposes. The
378	Living Marine Resources of the Western Central Pacific, FAO.
379	Coronado E, Salas S, Torres-Irineo E, Chuenpagdee R. 2020. Disentangling the complexity
380	of small-scale fisheries in coastal communities through a typology approach. The case
381	study of the Yucatan Peninsula, Mexico. Regional Studies in Marine Science, 36: 101312.
382	DOI: 10.1016/j.rsma.2020.101312
383	FAO. 2014. APFIC/FAO Regional Expert Workshop on "Regional guidelines for the
384	management of tropical trawl fisheries in Asia". Phuket, Thailand, 30 September-4
385	October 2013. FAO Regional Office for Asia and the Pacific, Bangkok, Thailand. RAP
386	Publication 2014/01, 91 pp.
387	Faruque H, Matsuda H. 2021. Assessing the vulnerability of bycatch species from Hilsa
388	gillnet fishing using productivity susceptibility analysis: Insights from Bangladesh.
389	Fisheries Research 234: 105808. DOI: 10.1016/j.fishres.2020.105808
390	Fazrul H, Hajisamae S, Ikhwanuddin M, Pradit S. 2015. Assessing impact of crab gill net
391	fishery to bycatch population in the Lower Gulf of Thailand. Turkish Journal of Fisheries
392	and Aquatic Sciences 15 (3): 767-777. DOI: 10.4194/1303-2712-v15_3_21
393	FishChoice. 2021. Fishery improvement project: Blue swimming crab. Available at
394	https://fisheryprogress.org/fip-profile/thailand-blue-swimming-crab-bottom-gillnettrap.
395	Fisheries Development Policy and Planning Division. 2020. Fisheries Statistics of Thailand
396	2019. Report No. 2/2021. Department of Fisheries, Bangkok. 80 p.
397	Froese R, Binohlan C. 2000. Empirical relationships to estimate asymptotic length, length at
398	first maturity and length at maximum yield per recruit in fishes, with a simple method to
399	evaluate length frequency data. <i>Journal of fish biology</i> 56(4) : 758-773. DOI: 10.1111/j.1095-
400	8649.2000.tb00870.x
401	Froese R, Pauly D. 2021. FishBase. World Wide Web electronic publication.
402	www.fishbase.org, version (08/2021).
403	Gray CA, Broadhurst MK, Johnson DD, Young DJ. 2005. Influences of hanging ratio,
404	fishing height, twine diameter and material of bottom-set gillnets on catches of dusky

405	flathead Platycephalus fuscus and non-target species in New South Wales, Australia.
406	Fisheries Science 71 (6): 1217-1228. DOI: 10.1111/j.1444-2906.2005.01086.x
407	Grewelle RE, Mansfield E, Micheli F, De LG. 2021. Redefining risk in data-poor fisheries.
408	Fish and Fisheries 22(5): 929-940 DOI 10.1111/faf.12561.
409	Ha VV, Huy PQ, Thuy ND, Nam WV, Bank R, Zaharia M. 2015. Risk Assessment of
410	Retained species caught in the Kien Giang Blue swimming crab fishery. Research
411	Institute for Marine Fisheries. HaiPhong - Viet Nam. 28 p.
412	Hobday AJ, Smith ADM, Stobutzki IC, Bulman C, Daley R, Dambacher JM, Deng RA,
413	Dowdney J, Fuller M, Furlani D, Griffiths SP. 2011. Ecological risk assessment for the
414	effects of fishing. Fisheries Research 108(2-3): 372-384. DOI: 10.1016/j.fishres.2011.01.013
415	Hordyk AR, Carruthers TR. 2018. A quantitative evaluation of a qualitative risk assessmen
416	framework: Examining the assumptions and predictions of the Productivity Susceptibility
417	Analysis (PSA). <i>PLoS ONE</i> 13(6) : e0198298 DOI: 10.1371/journal.pone.0198298.
418	Jara A, Damiano MD, Heppell SS. 2022. Integration of scientific and local expertise to
419	develop risk assessments for nearshore species at different spatial scales. Fisheries
420	Research 245:106153. DOI: 10.1016/j.fishres.2021.106153
421	Jarernpornnipat A, Pedersen O, Jensen KR, Boromthanarat S, Vongvisessomjai S,
422	Choncheanchob P. 2003. Sustainable management of shellfish resources in Bandon Bay
423	Gulf of Thailand. Journal of Coastal Conservation 9:135-146. DOI: 10.1652/1400-
424	0350(2003)009[0135:SMOSRI]2.0.CO;2
425	Jutagate T, Lek S, Sawusdee A, Sukdiseth U, Thappanand-Chaidee T, Ang-Lek S,
426	Thongkhoa S, Chotipuntu P. 2011. Spatio-temporal variations in fish assemblages in a
427	tropical regulated lower river course: an environmental guild approach. River Research
428	and Applications 27(1): 47-58 DOI: 10.1002/rra.1338.
429	Jutagate T, Sawusdee A, Thappanand-Chaidee T, Lek S, Grenouillet G, Thongkhoa S,
430	Chotipuntu P. 2010. Variations of environmental variables and fish assemblages due to
431	damming for anti-salt intrusion to the upriver in the tropic. Marine and Freshwater
432	Research 61(3): 288-301 DOI: 10.1071/MF08296

433	Kottelat M. 2013. The fishes of the inland waters of southeast Asia: a catalogue and core
434	bibiography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles
435	Bulletin of Zoology 27: 1-663.
436	Kritsanapuntu S, Chaitanawisuti N. 2019. Distribution and diversity of benthic
437	macroinvertebrate fauna in three repeated operating ages of the blood cockle Anadara
438	granosa cultivation in Bandon Bay, Suratthani Province, Southern Thailand. Aquaculture
439	Research 50 (12): 3539-3548. DOI: 10.1111/are.14308
440	Kulanujaree N, Salin KR, Noranarttragoon P, Yakupitiyage A. 2020. The transition from
441	unregulated to regulated fishing in Thailand. Sustainability 12(14): 5841. DOI:
442	10.3390/su12145841
443	Kunsook C, Dumrongrojwatthana P. 2017. Species diversity and abundance of marine crabs
444	(Portunidae: Decapoda) from a collapsible crab trap fishery at Kung Krabaen Bay,
445	Chanthaburi Province, Thailand. Tropical Life Sciences Research 28(1): 45-67 DOI:
446	10.21315/tlsr2017.28.1.4.
447	Lin CY, Wang SP, Chiang WC, Griffiths S, Yeh HM. 2020. Ecological risk assessment of
448	species impacted by fisheries in waters off eastern Taiwan. Fisheries Management and
449	Ecology 27 (4): 345-356. DOI: 10.1111/fme.12417
450	Mohamed KS, Sathianandan TV, Vivekanandan E, Kuriakose S, Ganga U, Pillai SL.
451	2021. Application of biological and fisheries attributes to assess the vulnerability and
452	resilience of tropical marine fish species. <i>PLoS ONE</i> 16(8) : e0255879 DOI:
453	10.1371/journal.pone.0255879.
454	Mohamed KS, Veena S. 2016. How long does it take for tropical marine fish stocks to
455	recover after declines? Case studies from the Southwest coast of India. Current Science
456	110(4) : 584-594. DOI:10.18520/cs/v110/i4/584-594
457	Nelson JS, Grande TC, Wilson MV. 2016. Fishes of the World. John Wiley & Sons.
458	Nillrat S, Ngamcharoen K, Darbanandana T, Sawusdee A. 2019. Biology and fisheries of
459	blue swimming crab in Thailand. Ubon Ratchathani Journal of Science and Technology
460	21 : 117-127. (in Thai)

461	Ormseth OA, Spencer PD. 2011. An assessment of vulnerability in Alaska groundlish.
462	Fisheries Research 112: 127-133. DOI: 10.1016/j.fishres.2011.02.010
463	Palomares MLD, Pauly D. 2021. SeaLifeBase. World Wide Web electronic publication.
464	www.sealifebase.org, version (08/2021).
465	Patrick WS, Spencer P, Link J, Cope J, Field J, Kobayashi D, Lawson P, Gedamke T,
466	Cort'es E, Ormseth O, Bigelow K, Overholtz W. 2010. Using productivity and
467	susceptibility indices to assess the vulnerability of united states fish stocks to overfishing
468	Fishery Bulletin 108 : 305–322.
469	Plongon B, Salaenoi J. 2015 . Seasonal influences size-fractionated Chlorophyll <i>a</i> in
470	aquaculture area at Bandon Bay, Thailand In International Conference on Plant, Marine
471	and Environmental Sciences (PMES-2015) Jan (pp. 1-2).
472	Prince J, Creech S, Madduppa H, Hordyk A. 2020. Length based assessment of spawning
473	potential ratio in data-poor fisheries for blue swimming crab (Portunus spp.) in Sri Lanka
474	and Indonesia: Implications for sustainable management. Regional Studies in Marine
475	Science 36: 101309. DOI: 10.1016/j.rsma.2020.101309
476	Purcell SW, Fraser NJ, Tagica S, Lalavanua W, Ceccarelli DM. 2018. Discriminating
477	catch composition and fishing modes in an artisanal multispecies fishery. Frontiers in
478	Marine Science 5, 243. DOI: 10.3389/fmars.2018.00243
479	R Core Team. 2021. R: A language and environment for statistical computing. R Foundation
480	for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/.
481	Robichaud D, Hunte W, Chapman MR. 2000. Factors affecting the catchability of reef
482	fishes in Antillean fish traps. Bulletin of Marine Science 67(2): 831-844.
483	Robinson J, Cinner JE, Graham NAJ. 2014. The Influence of Fisher Knowledge on the
484	Susceptibility of Reef Fish Aggregations to Fishing. PLoS ONE 9(3): e91296. DOI:
485	10.1371/journal.pone.0091296.
486	Sang HM, Lam HS, Hai TB. 2019. Reproductive biology of sagor catfish (Hexanematichthys
487	sagor Hamilton, 1822) in Can Gio water, Vietnam. Indian Journal of Geo Marine
488	Sciences 48(6): 835-840.

189	Sawusdee A, 2010. Fishing Status and Management Proposal in Bandon Bay, Suratthani
190	Province, Thailand. Walailak Journal of Science and Technology 7(2): 89-101.
491	Shester GG, Micheli F. 2011. Conservation challenges for small-scale fisheries: Bycatch and
192	habitat impacts of traps and gillnets. Biological Conservation 144(5): 1673-1681. DOI:
193	10.1016/j.biocon.2011.02.023
194	Supadminingsih FN, Riyanto M, Wahju RI. 2018. Study of horseshoe crab as bycatch
195	around bottom gillnet in Mayangan Waters, Subang, West Java. Proceeding of the 11th
196	International Conference on Chemical, Agricultural, Biological and Environmental
197	Sciences Proceeding (CABES-2018), pp. 23 – 27. April 17-18, 2018 Kyoto (Japan).
198	https://doi.org/10.17758/IICBE1.C0418133
199	Thongkhao S. 2020. A Final Report on the Survey and Completion of the Territory,
500	Resources and Ecosystem in Sed Island in Ban Don Bay, Surat Thani Province.
501	Uhlmann SS, Broadhurst MK. 2015. Mitigating unaccounted fishing mortality from gillnets
502	and traps. Fish and Fisheries 16(2): 183–229. DOI: 10.1111/faf.12049
503	Wiyono E, Ihsan S. 2018. Abundance, Fishing Season and Management Strategy for Blue
504	Swimming Crab (Portunus pelagicus) in Pangkajene Kepulauan, South Sulawesi,
505	Indonesia. Tropical Life Sciences Research 29(1): 1-15. DOI:10.21315/tlsr2018.29.1.1

- **Figure 1** Location and map of Bandon Bay, Surratthani, Thailand. Red dots indicate sampling sites, where fishing gears were deployed.
- **Figure 2** Catch composition by percentages of (A) number and (B) weight in bottom-set gillnets and by percentages of (C) number and (D) weight in collapsible crab traps in Bandon Bay, Surratthani, Thailand.
- Figure 3 Index of relative importance of blue swimming crab, as main target species, in bottom-set gillnets and collapsible crab traps in Bandon Bay, Surratthani,

 Thailand.
- Figure 4 Dendrogram cluster by month of sampling of main catches by (A) bottom-set gillnets and (B) collapsible crab traps in Bandon Bay, Surratthani, Thailand. Abbreviations: Crabs Charybdis affinis (chaf), Seulocia vittata (sevi), Dorippe quadridens (doqu), Doclea canalifera (doca), Portunus pelagicus (pope), Charybdis anisodon (chan), Portunus sanguinolentus (posa), Macrophthalmus sp. (masp), Charybdis feriata (chfe), Myomenippe hardwickii (myha), Thalamita spinimana (thsp), Doclea sp. (dosp); Bony fishes Platycephalus sp. (plat), Brachirus orientalis (bror), Lagocephalus lunaris (lalu), Takifugu oblongus (taob), Paramonacanthus choirocephalus (pach); Gastropods Pugilina schumacher (pusc), Melo melo (meme), Murex sp.1 (musp1), Murex sp.2 (musp2); Cephalopods Sepia sp.1 (sesp1), Sepia sp.2 (sesp2), Sepiella inermis (sein); Hermit crabs Diogenes sp.2 (disp2), Clibanarius infraspinatus (ciin), Clibanarius infraspinatus (cain); Sea stars Temnopleurus toreumaticus (teto), Sea star 2 (sest2); Sea cucumber Phyllophorella kohkutiensis (phko); Horseshoe crab Tachypleus gigas (tagi); Brittle star: Luidia sp. (lusp); Mantis shrimp: Harpiosquilla harpax (hapa)
- **Figure 5** Productivity-susceptibility plot for blue swimming crab and other catch-groups by (A) bottom-set gillnets and (B) collapsible crab traps in Bandon Bay,

Surratthani, Thailand. Lines indicate standard deviations of productivity and susceptibility attributes.

Figure 6 Box-plots showing the vulnerability scores between two fishing gears for each group of aquatic animals. Gillnet = bottom-set gillnet and Trap = collapsible crab trap. Number in parentheses is the P-value from Mann-Whitney U test.

Table 1 List of attributes used for Productivity Analysis (a) and Susceptibility Analysis (b) of the BSC fisheries in Bandon Bay.

a) Productivity

	Productivity / Risk									
Productivity attributes	Low productivity / High risk (Score = 3)	Medium productivity/ Medium risk (Score = 2)	High productivity/ Low risk (Score = 1)							
Average age at maturity (years)	> 4	2 to 4	< 2							
Average maximum age (years)	>30	10 to 30	< 10							
Fecundity (eggs/spawning)	< 1,000	1,000 to 10,000	> 10,000							
Average maximum size (cm)	> 150	60 to 150	< 60							
Average size at maturity (cm)	> 150	30 to 150	< 30							
Reproductive strategy	Live bearer, mouth brooder or significant parental investment	Demersal spawner or "berried"	Broadcast spawner							
Mean trophic level	> 3.25	2.5 - 3.25	< 3.25							

b) Susceptibility

Suggestibility attributes	Susceptibility / Risk									
Susceptibility attributes	High risk (Score = 3)	Medium risk (Score = 2)	Low risk (Score = 1)							
Availability I: Overlap of adult	> 50% of stock occurs in the area	25% and 50% of stock occurs in	< 25% of stock occurs in the area							
species range with fishery	fished	the area fished	fished							
Availability II: Distribution	Only in the country/ fishery	Limited range in the region	Throughout the region / global							
Encounterability I: Habitat	Habitat preference of species make it highly likely to encounter gears	Habitat preference of species make it moderately likely to encounter gears	Depth or distribution of species make it unlikely to encounter gears							
Encounterability II: Depth range Selectivity	High overlap with fishing gears Species >2 times mesh size	Medium overlap with fishing gears Species 1 or 2 > mesh size	Low overlap with fishing gears Species < mesh size or too large to be selected							
Post capture mortality	Probability of survival <33 %	Between 33 % and 67 % probability of survival	Probability of survival > 67 %							

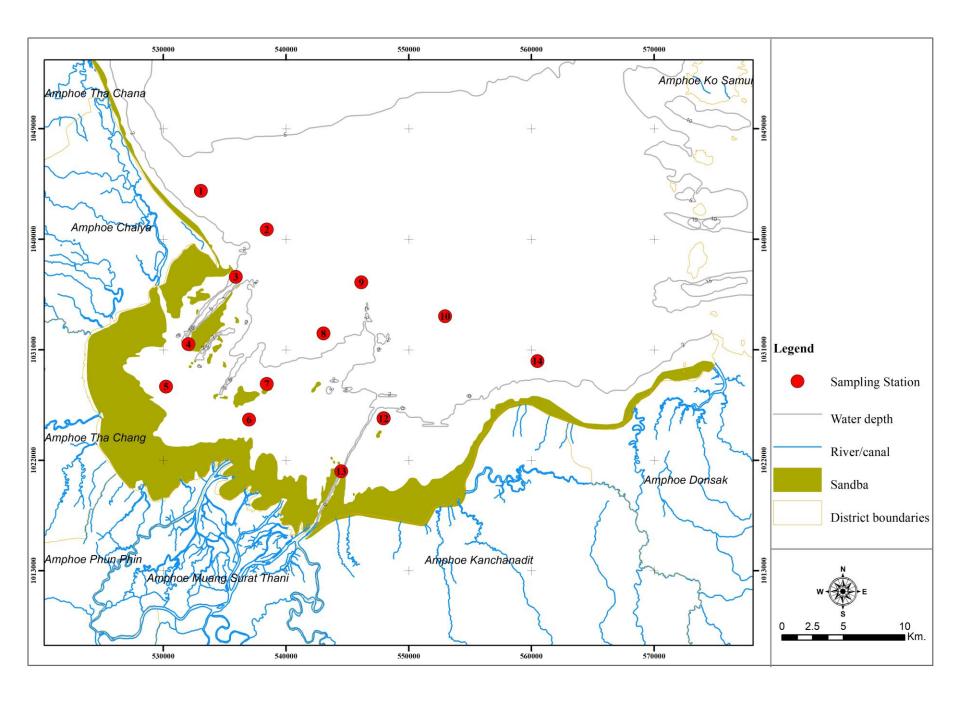
Table 2 Rank scores for data quality used for the Productivity-Susceptibility Analysis of the blue swimming crab fisheries in Bandon Bay, Suratthani, Thailand

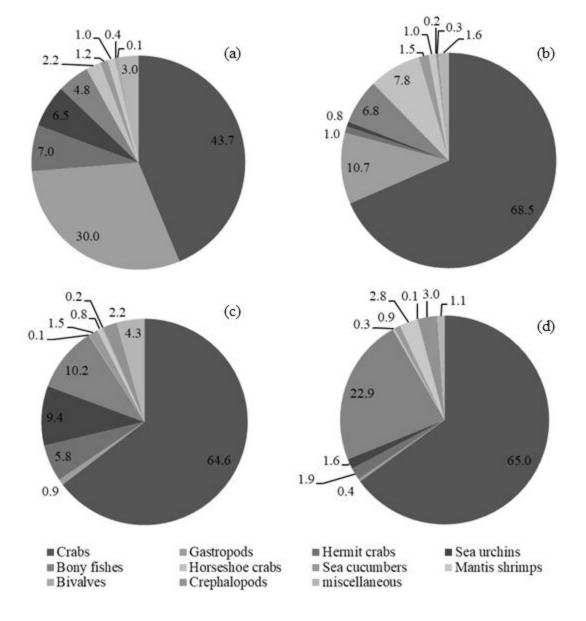
Score	Data quality	Description
1	Best data	Information is based on collected data for the stock and area
		of interest that is established and substantial
2	Adequate data	Information is based on limited coverage and corroboration, or
		for some other reason is deemed not as reliable as tier-1 data
3	Limited data	Estimates with high variation and limited confidence, and may
		be based on studies of similar taxa or life history strategies
4	Very limited data	Information based on expert opinion or general literature
		reviews from a wide range of species, or from outside of
		region, or data derived by equation using the correlated life
		history parameters
5	No data	No information available

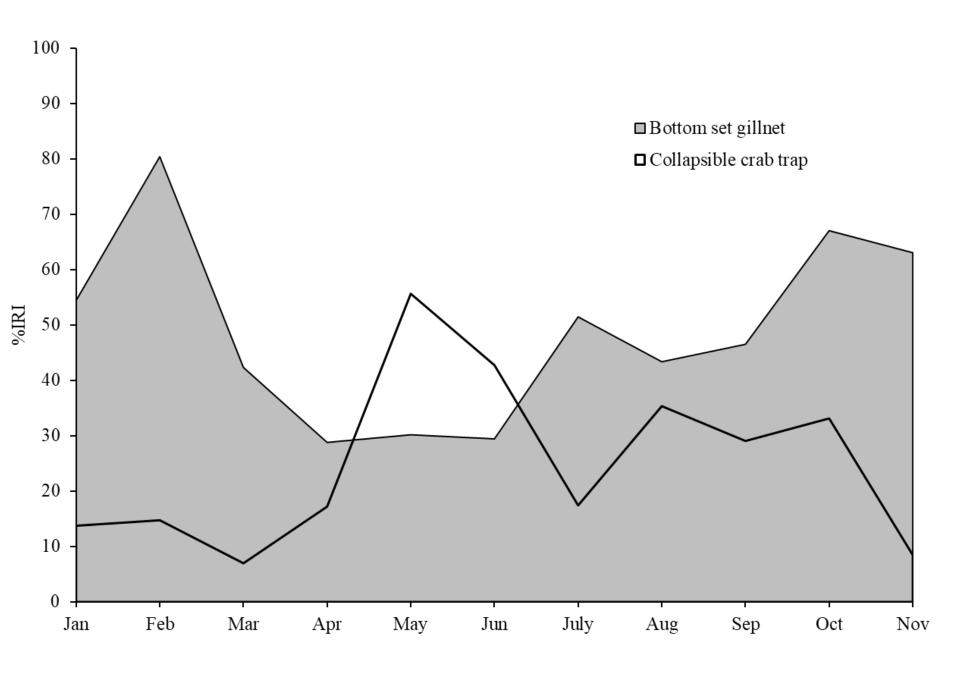
Table 3 List of taxa captured, their contribution in catches and risks in the small-scale fisheries of the Bandon Bay, Thailand

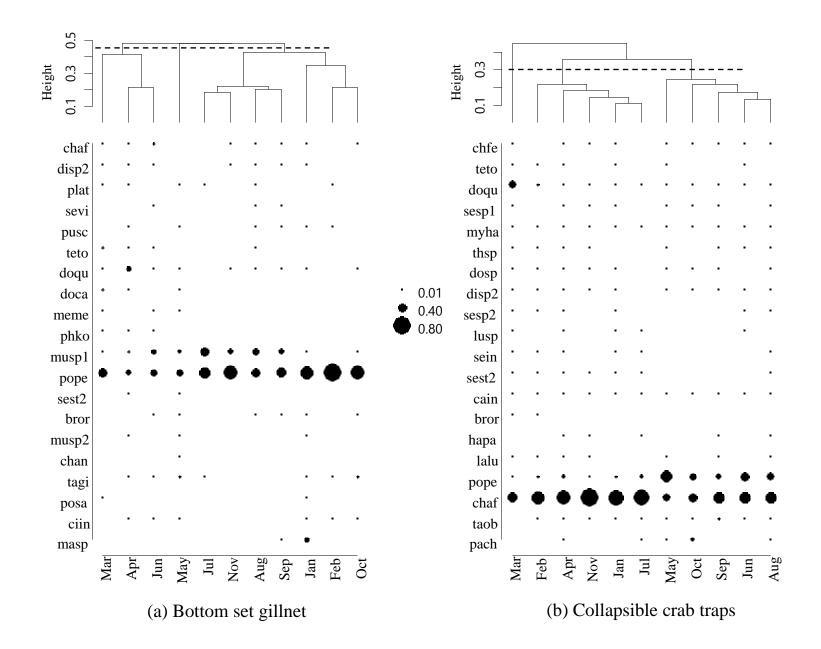
Family	Scientific name	% N (G)	%W (G)	%N (T)	%W (T)	%IRI (G)	%IRI (T)	P	QP	S (G)	V(G)	S(T)	V(T)
Actiniidae	Anthopleura sp.	0.30	0.03	0.13	0.01	0.05	0.01	NA	4.14	1.26	NA	1.26	NA
Strombidae	Doxander vittatus	0.04	< 0.01	NA	NA	0.01	NA	1.14	3.57	2.62	2.86	NA	NA
Bursidae	Bufonaria crumena	0.22	0.12	NA	NA	0.10	NA	1.14	3.57	2.62	2.86	NA	NA
Naticidae	Natica vitellus	NA	NA	< 0.01	< 0.01	NA	< 0.01	1.14	2.57	NA	NA	1.70	2.05
Muricidae	Lataxiena blosvillei	NA	NA	< 0.01	< 0.01	NA	< 0.01	1.14	3.57	NA	NA	1.70	2.05
Muricidae	Murex trapa	0.04	0.01	NA	NA	0.02	NA	1.14	2.57	2.62	2.86	NA	NA
Muricidae	Murex sp.1	26.60	4.23	0.07	0.02	17.69	< 0.01	1.14	2.57	2.62	2.86	1.70	2.05
Muricidae	Murex sp.2	1.09	0.38	0.02	0.01	0.40	< 0.01	1.14	2.57	2.62	2.86	1.91	2.23
Muricidae	Indothais sp.	0.22	0.04	0.48	0.05	0.07	0.01	1.14	2.57	2.45	2.70	1.70	2.05
Nassariidae	Rapana rapiformis	0.04	0.10	NA	NA	0.01	NA	1.14	2.57	2.62	2.86	NA	NA
Nassariidae	Nassaria pusilla	0.09	< 0.01	0.23	0.11	0.01	0.01	1.14	3.71	2.62	2.86	1.70	2.05
Nassariidae	Nassarius siquijorensis	NA	NA	0.04	0.02	NA	< 0.01	1.14	3.71	NA	NA	1.70	2.05
Melongenidae	Hemifusus sp.	0.43	0.35	0.04	0.03	0.19	< 0.01	1.14	3.14	2.62	2.86	2.04	2.34
Melongenidae	Pugilina Schumacher	0.96	2.64	0.02	0.03	1.46	< 0.01	1.14	3.14	2.62	2.86	1.70	2.05
Fasciolariidae	Pleuroploca sp.	NA	NA	< 0.01	< 0.01	NA	< 0.01	1.14	3.71	NA	NA	1.91	2.23
Volutidae	Cymbiola nobilis	0.04	0.89	0.02	0.11	0.16	< 0.01	1.14	1.86	2.45	2.7	1.70	2.05
Volutidae	Melo melo	0.17	1.91	NA	NA	0.40	NA	1.14	1.86	2.62	2.86	NA	NA
Arcidae	Anadara inaequivalvis	0.09	0.13	0.11	0.08	0.04	< 0.01	1.00	2.71	1.82	2.07	1.70	1.97
Arcidae	Tegillarca nodifera	0.30	0.03	0.09	0.02	0.07	< 0.01	1.00	2.71	1.82	2.07	1.70	1.97
Pectinidae	Chlamys sp.	NA	NA	0.02	< 0.01	NA	< 0.01	1.00	3.14	NA	NA	1.70	1.97
Pectinidae	Mimachlamys sp.	0.04	0.01	0.02	< 0.01	0.01	< 0.01	1.00	2.57	1.51	1.81	1.70	1.97
Sepiidae	Sepia sp.1	0.09	0.26	0.66	1.17	0.05	0.15	1.57	1.71	2.04	2.57	2.00	2.54
Sepiidae	Sepia sp.2	NA	NA	0.36	0.70	NA	0.08	1.57	1.71	NA	NA	2.00	2.54
Sepiidae	Sepiella inermis	NA	NA	1.17	1.08	NA	0.56	1.57	1.71	NA	NA	1.78	2.37
Octopodidae	Octopus sp.	0.04	0.02	0.04	0.10	0.01	< 0.01	1.57	1.57	1.94	2.5	1.78	2.37
Limulidae	Carcinoscorpius rotundicauda	0.35	0.54	< 0.01	< 0.01	0.24	< 0.01	1.71	2.14	2.45	2.99	NA	NA
Limulidae	Tachypleus gigas	1.87	7.30	0.05	0.32	4.78	0.02	1.71	2.14	2.62	3.13	1.70	2.41

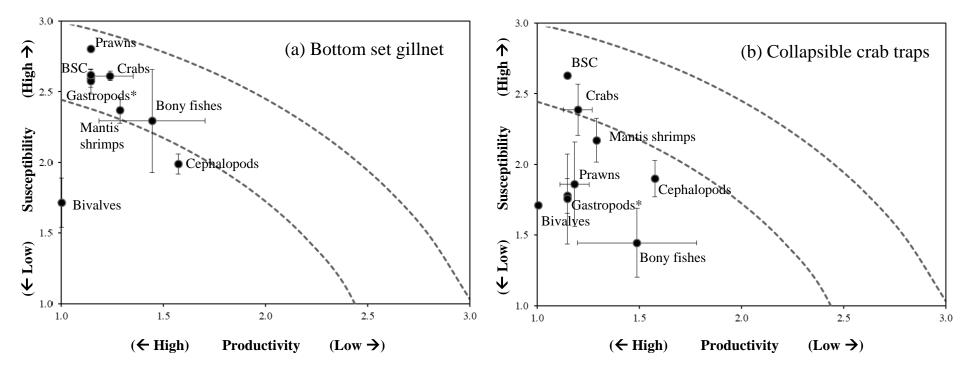
Family	Scientific name	% N (G)	%W (G)	%N (T)	%W (T)	%IRI (G)	%IRI (T)	P	QP	S (G)	V(G)	S(T)	V (T)
Squillidae	Harpiosquilla harpax	0.26	0.48	0.47	1.59	0.18	0.24	1.29	1.86	2.45	2.77	1.91	2.30
Squillidae	Harpiosquilla raphidea	0.04	0.09	0.13	0.47	0.03	0.02	1.29	1.86	2.29	2.63	2.14	2.50
Squillidae	Oratosquillina interrupta	0.35	0.18	0.09	0.64	0.12	0.01	1.29	1.86	2.29	2.63	2.29	2.63
Squillidae	Oratosquilla nepa	0.39	0.24	0.05	0.07	0.31	< 0.01	1.29	1.86	2.45	2.77	2.18	2.53
Squillidae	Oratosquilla woodmasoni	NA	NA	0.04	0.01	NA	< 0.01	1.29	1.86	NA	NA	2.29	2.63
Scyllaridae	Thenus indicus	0.13	0.31	NA	NA	0.17	NA	1.29	3.43	2.62	2.92	NA	NA
Penaeidae	Metapenaeus sp.	NA	NA	0.04	< 0.01	NA	< 0.01	1.14	1.14	NA	NA	2.04	2.34
Penaeidae	Penaeus semisulcatus	< 0.01	< 0.01	0.04	0.01	< 0.01	< 0.01	1.14	1.14	2.80	3.03	1.91	2.23
Penaeidae	Penaeus silasi	NA	NA	0.07	0.04	NA	< 0.01	1.14	1.14	NA	NA	2.04	2.34
Palaemonidae	Macrobrachium rosenbergii	NA	NA	0.02	0.06	NA	< 0.01	1.29	1.14	NA	NA	1.41	1.91
Diogenidae	Diogenes sp.1	1.13	0.06	1.04	0.23	0.36	0.19	1.29	2.71	2.62	2.92	2.18	2.53
Diogenidae	Diogenes sp.2	4.65	0.37	0.30	0.02	2.33	0.03	1.29	2.71	2.62	2.92	2.04	2.41
Diogenidae	Clibanarius infraspinatus	1.17	0.53	4.30	1.57	0.55	0.96	1.29	2.71	2.45	2.77	2.45	2.77
Diogenidae	Dardanus lagopodes	NA	NA	0.13	0.07	NA	< 0.01	1.29	2.71	NA	NA	2.29	2.63
Dorippidae	Dorippe quadridens	7.04	1.78	10.77	4.08	4.52	4.92	1.14	2.00	2.62	2.86	2.45	2.70
Dorippidae	Neodorippe callida	NA	NA	0.02	< 0.01	NA	< 0.01	1.14	2.16	NA	NA	2.29	2.56
Leucosiidae	Seulocia vittata	1.74	0.2	0.39	0.02	0.66	NA	NA	4.00	2.62	NA	2.45	NA
Matutidae	Matuta planipes	0.04	0.05	0.22	0.20	0.02	0.01	1.29	2.29	2.62	2.92	2.04	2.41
Matutidae	Matuta victor	< 0.01	< 0.01	0.22	0.13	< 0.01	0.02	1.29	2.29	2.62	2.92	2.04	2.41
Epialtidae	Doclea armata	0.30	0.10	0.30	0.03	0.09	0.04	1.14	2.86	2.62	2.86	2.62	2.86
Epialtidae	Doclea canalifera	0.65	1.33	0.34	0.29	1.28	0.04	1.14	2.86	2.62	2.86	2.62	2.86
Epialtidae	Doclea rissoni	NA	NA	0.13	0.11	NA	0.01	1.14	2.86	NA	NA	2.45	2.70
Epialtidae	Doclea sp.	0.26	0.16	0.95	0.72	0.08	0.16	1.14	2.86	2.62	2.86	2.18	2.46
Galenidae	Galene bispinosa	0.26	0.41	0.02	0.07	0.17	< 0.01	1.29	4.00	2.62	2.92	2.18	2.53
Galenidae	Halimede ochtodes	0.26	0.17	NA	NA	0.15	NA	1.29	4.00	2.62	2.92	NA	NA
Parthenopidae	Rhinolambrus sp.	0.70	0.26	NA	NA	0.21	NA	NA	4.14	2.62	NA	NA	NA
Portunidae	Lupocycloporus gracilimanus	NA	NA	< 0.01	< 0.01	NA	< 0.01	1.14	1.00	NA	NA	2.45	2.70
Portunidae	Portunus haanii	0.04	0.01	< 0.01	< 0.01	0.01	< 0.01	1.14	1.00	2.62	2.86	2.62	2.86


Family	Scientific name	% N (G)	%W (G)	%N (T)	%W (T)	%IRI (G)	%IRI (T)	P	QP	S (G)	V(G)	S(T)	V(T)
Portunidae	Portunus pelagicus	22.21	58.65	11.08	26.84	48.85	24.98	1.14	1.00	2.62	2.86	2.62	2.86
Portunidae	Portunus sanguinolentus	0.48	1.08	0.13	0.09	0.46	0.02	1.14	1.00	2.62	2.86	2.45	2.7
Portunidae	Scylla olivacea	NA	NA	0.04	0.65	NA	0.01	1.14	1.00	NA	NA	2.45	2.7
Portunidae	Xiphonectes hastatoides	0.04	0.01	NA	NA	0.01	NA	1.14	1.00	2.62	2.86	NA	NA
Portunidae	Charybdis affinis	3.52	1.52	37.16	24.14	1.98	56.61	1.29	1.86	2.45	2.77	2.62	2.92
Portunidae	Charybdis anisodon	0.74	0.29	0.32	0.15	0.47	0.04	1.29	1.86	2.62	2.92	2.18	2.53
Portunidae	Charybdis feriata	0.13	0.46	0.91	3.82	0.15	0.68	1.29	1.86	2.62	2.92	2.45	2.77
Portunidae	Charybdis natator	0.09	0.31	NA	NA	0.09	NA	1.29	1.86	2.62	2.92	NA	NA
Portunidae	Charybdis truncata	NA	NA	0.02	< 0.01	NA	< 0.01	1.29	1.86	NA	NA	2.62	2.92
Portunidae	Thalamita crenata	NA	NA	< 0.01	< 0.01	NA	< 0.01	1.14	1.86	NA	NA	2.29	2.56
Portunidae	Thalamita spinimana	0.04	0.05	0.70	0.84	0.01	0.10	1.14	1.00	2.62	2.86	2.29	2.56
Portunidae	Thalamita sima	NA	NA	0.13	0.13	NA	0.01	1.14	1.86	NA	NA	2.29	2.56
Portunidae	Podophthalmus vigil	< 0.01	< 0.01	NA	NA	< 0.01	NA	1.14	1.00	2.62	2.86	NA	NA
Menippidae	Myomenippe hardwickii	0.13	0.08	0.65	2.48	0.02	0.24	1.14	4.14	2.62	NA	2.45	2.7
Galenidae	Halimede ochtodes	NA	NA	0.09	0.13	NA	0.01	1.29	4.14	NA	NA	2.29	2.63
Macrophthalmidae	Macrophthalmus sp.	4.91	1.25	NA	NA	1.88	NA	1.50	3.57	2.62	3.02	NA	NA
Varunidae	Varuna yui	NA	NA	< 0.01	0.08	NA	< 0.01	NA	3.57	NA	NA	2.18	NA
Ophiotrichidae	Ophiocnemis marmorata	< 0.01	< 0.01	NA	NA	< 0.01	NA	NA	4.00	2.80	NA	NA	NA
Ophiotrichidae	Ophiocnemis sp.	NA	NA	0.02	< 0.01	NA	< 0.01	NA	3.86	NA	NA	2.45	NA
Ophiotrichidae	Luidia sp.	0.04	0.02	0.63	0.34	0.02	0.14	NA	3.86	2.45	NA	2.45	NA
Astropectinidea	Astropecten sp. 1	< 0.01	< 0.01	0.11	0.01	< 0.01	< 0.01	1.14	3.86	2.45	NA	2.29	2.56
Astropectinidea	Astropecten sp. 2	1.91	0.24	2.96	0.51	0.92	0.88	1.14	3.86	2.18	NA	2.29	2.56
Holothuriidae	Acaudina sp.1	0.52	0.22	0.88	0.46	0.22	0.08	1.14	2.86	2.62	2.86	2.18	2.46
Holothuriidae	Acaudina sp.2	0.13	0.18	0.22	0.06	0.09	0.01	1.14	2.86	2.62	2.86	1.70	2.05
Phyllophoridae	Phyllophorella kohkutiensis	0.43	1.09	0.36	0.39	0.59	0.06	1.14	2.86	2.62	2.86	1.41	1.81
Caudinidae	Holothuria spp.	0.09	0.01	0.04	< 0.01	0.01	< 0.01	1.14	2.86	2.45	2.70	1.70	2.05
Pennatulidae	Pteroeides sp.	0.48	0.4	0.16	0.12	0.24	0.01	1.00	4.43	2.14	2.36	1.26	NA
Temnopleuridae	Temnopleurus toreumaticus	6.48	0.76	9.37	1.59	2.86	1.62	1.00	3.71	2.62	NA	2.62	2.80


Family	Scientific name	% N (G)	%W (G)	%N (T)	%W (T)	%IRI (G)	%IRI (T)	P	QP	S (G)	V(G)	S(T)	V(T)
Schizasteridae	Schizaster lacunosus	0.04	0.02	NA	NA	0.01	NA	1.50	4.33	2.29	2.74	NA	NA
Clypeasteridae	Arachnoides placenta	NA	NA	0.18	0.01	NA	0.03	1.00	3.57	NA	NA	1.82	2.08
Dasyatidae	Himantura imbricata	0.17	0.63	NA	NA	0.23	NA	2.00	1.86	2.45	3.16	NA	NA
Dasyatidae	Maculabatis gerrardi	0.09	0.23	NA	NA	0.05	NA	2.00	2.43	2.45	3.16	NA	NA
Muraenesocidae	Muraenesox cinereus	0.04	0.44	< 0.01	< 0.01	0.29	< 0.01	2.00	1.86	2.45	3.16	1.41	2.57
Clupeidae	Sardinella gibbosa	NA	NA	0.13	0.04	NA	0.01	1.14	1.71	NA	NA	1.41	1.81
Engraulidae	Thryssa kammalensis	NA	NA	0.04	< 0.01	NA	< 0.01	1.43	1.86	NA	NA	1.26	1.90
Ariidae	Hexanematichthys sagor	< 0.01	0.01	NA	NA	< 0.01	NA	2.00	1.86	2.45	3.16	NA	NA
Batrachoididae	Batrachomoeus trispinosus	NA	NA	0.16	0.66	NA	0.02	1.86	1.71	NA	NA	1.78	2.57
Syngnathidae	Hippocampus sp.	0.04	< 0.01	NA	NA	< 0.01	NA	1.86	2.71	1.70	2.52	NA	NA
Tetrarogidae	Vespicula trachinoides	NA	NA	0.16	0.02	NA	0.04	1.57	2.00	NA	NA	1.26	2.01
Platycephalidae	Platycephalus indicus	0.09	0.24	0.07	0.10	0.19	< 0.01	1.57	1.86	2.62	3.06	1.59	2.24
Platycephalidae	Platycephalus sp.	0.61	1.43	NA	NA	0.92	NA	1.57	2.29	2.62	3.06	NA	NA
Ambassidae	Ambassis sp.	NA	NA	0.23	0.01	NA	0.01	1.29	1.86	NA	NA	1.26	1.80
Serranidae	Epinephelus coioides	NA	NA	< 0.01	< 0.01	NA	< 0.01	2.00	1.71	NA	NA	1.26	2.36
Serranidae	Epinephelus sexfasciatus	NA	NA	0.04	0.06	NA	< 0.01	1.43	1.86	NA	NA	1.26	1.90
Teraponidae	Terapon jarbua	NA	NA	0.32	0.13	NA	0.05	1.57	1.86	NA	NA	1.26	2.01
Teraponidae	Terapon puta	0.04	0.03	0.25	0.03	0.01	0.05	1.14	1.86	2.62	2.86	1.59	1.96
Teraponidae	Terapon theraps	NA	NA	0.11	0.01	NA	0.01	1.29	2.00	NA	NA	1.59	2.04
Priacanthidae	Priacanthus tayenus	0.09	0.07	NA	NA	0.03	NA	1.29	1.86	1.94	2.33	NA	NA
Apogonidae	Ostorhinchus fasciatus	NA	NA	< 0.01	< 0.01	NA	< 0.01	1.71	2.14	NA	NA	1.26	2.13
Sillaginidae	Sillago sihama	0.09	< 0.01	NA	NA	< 0.01	NA	1.29	1.86	2.18	2.53	NA	NA
Carangidae	Alepes djedaba	NA	NA	0.25	0.05	NA	0.05	1.43	2.00	NA	NA	1.41	2.01
Carangidae	Carangoides praeustus	NA	NA	< 0.01	< 0.01	NA	< 0.01	1.43	2.00	NA	NA	1.26	1.90
Carangidae	Carangoides sp.	NA	NA	NA	NA	NA	NA	2.00	2.57	NA	NA	1.26	2.36
Carangidae	Megalaspis cordyla	0.02	< 0.01	NA	NA	< 0.01	NA	1.43	2.29	1.94	2.41	NA	NA
Leiognathidae	Eubleekeria splendens	0.09	0.21	NA	NA	0.05	NA	1.14	1.86	1.62	1.98	NA	NA
Leiognathidae	Gazza minuta	0.22	0.03	0.07	< 0.01	0.01	0.02	1.14	1.71	1.94	2.26	1.26	1.70


Family	Scientific name	% N (G)	%W (G)	%N (T)	%W (T)	%IRI (G)	%IRI (T)	P	QP	S (G)	V(G)	S(T)	V(T)
Leiognathidae	Nuchequula gerreoides	0.04	0.02	0.27	0.06	0.01	0.02	1.14	1.86	1.94	2.26	1.26	1.70
Leiognathidae	Secutor hanedai	NA	NA	< 0.01	< 0.01	NA	< 0.01	NA	1.86	NA	NA	1.41	1.81
Lutjanidae	Lutjanus russelli	0.04	0.04	< 0.01	< 0.01	0.03	< 0.01	1.57	2.00	2.45	2.91	1.26	2.01
Gerreidae	Gerres macracanthus	< 0.01	< 0.01	NA	NA	< 0.01	NA	1.29	1.86	2.18	2.53	NA	NA
Haemulidae	Pomadasys kaakan	NA	NA	0.09	0.04	NA	< 0.01	2.00	2.00	NA	NA	1.26	2.36
Haemulidae	Pomadasys maculatus	NA	NA	< 0.01	< 0.01	NA	< 0.01	1.86	2.00	NA	NA	1.26	2.24
Polynemidae	Eleutheronema tetradactylum	< 0.01	< 0.01	NA	NA	< 0.01	NA	2.00	1.43	2.33	3.07	NA	NA
Sciaenidae	Johnius amblycephalus	0.09	0.08	0.13	0.07	0.03	0.01	1.29	2.00	2.62	2.92	1.26	1.80
Sciaenidae	Pseudosciaena soldado	0.48	0.38	0.04	0.09	0.22	< 0.01	1.86	1.71	2.18	2.87	1.26	2.24
Sciaenidae	Otolithes ruber	0.65	0.65	< 0.01	< 0.01	0.33	< 0.01	1.43	1.43	2.18	2.61	1.26	1.90
Sciaenidae	Pennahia anea	0.13	0.03	0.05	0.02	0.04	< 0.01	1.29	1.43	2.18	2.53	1.59	2.04
Sciaenidae	Panna microdon	0.04	0.01	NA	NA	0.01	NA	1.29	2.00	2.62	2.92	NA	NA
Mullidae	Upeneus sulphureus	< 0.01	< 0.01	0.07	0.05	< 0.01	< 0.01	1.14	2.00	2.18	2.46	1.26	1.70
Mullidae	Upeneus sundaicus	NA	NA	0.25	0.28	NA	0.02	1.29	2.00	NA	NA	1.41	1.91
Drepaneidae	Drepane punctata	0.74	0.74	NA	NA	0.38	NA	1.57	1.86	2.62	3.06	NA	NA
Ephippidae	Ephippus orbis	< 0.01	< 0.01	NA	NA	< 0.01	NA	1.29	2.14	2.45	2.77	NA	NA
Scatophagidae	Scatophagus argus	NA	NA	0.04	< 0.01	NA	< 0.01	1.14	1.29	NA	NA	1.41	1.80
Sphyraenidae	Sphyraena jello	NA	NA	0.11	< 0.01	NA	0.01	2.14	2.00	NA	NA	1.26	2.49
Stromateidae	Pampus chinensis	< 0.01	0.06	NA	NA	0.01	NA	1.29	1.86	2.33	2.67	NA	NA
Blenniidae	Petroscirtes sp.	NA	NA	0.02	0.01	NA	< 0.01	1.29	2.71	NA	NA	1.26	1.80
Gobiidae	Acentrogobius caninus	NA	NA	0.05	0.01	NA	0.01	1.43	2.00	NA	NA	1.26	1.90
Siganidae	Siganus canaliculatus	NA	NA	0.23	0.25	NA	0.02	1.14	1.86	NA	NA	1.41	1.81
Siganidae	Siganus javus	0.04	0.09	0.32	0.46	0.01	0.06	1.14	1.86	2.62	2.86	1.41	1.81
Scombridae	Scomberomorus commerson	0.04	0.09	NA	NA	0.08	NA	2.00	1.86	2.04	2.86	NA	NA
Cynoglossidae	Cynoglossus arel	NA	NA	0.04	0.01	NA	< 0.01	1.43	2.00	NA	NA	2.14	2.57
Cynoglossidae	Cynoglossus trulla	0.04	0.05	0.02	0.01	0.02	< 0.01	1.43	2.00	2.80	3.15	1.59	2.14
Cynoglossidae	Cynoglossus sp. 1	0.04	0.09	0.07	0.02	0.02	0.01	1.43	2.57	2.80	3.15	2.14	2.57
Cynoglossidae	Cynoglossus sp.2	0.04	0.01	0.02	0.07	0.01	< 0.01	1.43	2.57	2.80	3.15	1.91	2.39


Family	Scientific name	% N (G)	%W (G)	%N (T)	%W (T)	%IRI (G)	%IRI (T)	P	QP	S (G)	V(G)	S(T)	V(T)
Soleidae	Brachirus orientalis	0.87	1.63	0.36	0.49	0.98	0.13	1.43	2.00	2.8	3.15	1.59	2.14
Soleidae	Brachirus harmandi	0.09	0.11	0.09	0.02	0.03	< 0.01	1.29	2.00	2.8	3.08	1.91	2.3
Soleidae	Synaptura commersonnii	< 0.01	< 0.01	NA	NA	< 0.01	NA	1.43	2.14	2.8	3.15	NA	NA
Monacanthidae	Paramonacanthus choirocephalus	NA	NA	1.22	0.16	NA	1.60	1.29	2.00	NA	NA	1.41	1.91
Tetraodontidae	Chelonodon sp.	NA	NA	0.09	0.42	NA	0.02	1.57	2.57	NA	NA	1.26	2.01
Tetraodontidae	Lagocephalus lunaris	< 0.01	< 0.01	1.67	0.36	< 0.01	1.06	1.57	2.00	1.94	2.5	1.41	2.11
Tetraodontidae	Takifugu oblongus	< 0.01	< 0.01	2.94	18.79	< 0.01	3.62	1.43	2.14	1.82	2.31	1.41	2.01


Note G and T are stood for gillnet and trap, respectively. %N, %W and %IRI are percentages in number, weight and index of relative importance, respectively. The scores from Productivity-Susceptibility Analysis are P = overall productivity score, QP = data quality score for productivity attributes, S= overall susceptibility score and V= total vulnerability score. NA means species was not available in the catches.

