Estado del avance de la evaluación del estado de explotación del recurso camarón en aguas del Sur de Sonora y Norte Sinaloa, con énfasis en camarón azul.

Francisco Arreguín-Sánchez

Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas farregui@ipn.mx

Sobre el desarrollo de las investigaciones

En este momento se tiene un par de problemas con la información, 1)) las estadísticas de capturas y el esfuerzo, no representan, per se, la secuencialidad de la pesca y, 2) no es posible asociar la distribución de frecuencias de tallas disponible con las capturas para estimar tasa(s) de reclutamiento. Se está ubicando un planteamiento alternativo para obtener esta información (es vital por la secuencialidad). En los siguientes párrafos de intentará explicar estos aspectos.

1) las capturas y el esfuerzo, per se, no representan la secuencialidad de la pesca de camarón

Lo que se había supuesto, es que al haber una secuencialidad en la pesquería las capturas por flota reflejarían la entrada de las flotas a la pesca cada temporada; esto es, que sería evidente, primero la entrada de la flota menor y posteriormente la entrada de la flota mayor. Esto permitía aplicar el modelo secuencial de acumulación de biomasa de manera directa con las dos flotas.

De acuerdo con la figura siguiente se esperaba cierta superposición entre las flotas, pero también que se diferenciaran con claridad mientras avanza la temporada de pesca (en la figura el área gris clara representa la flota menor y la gris oscura la mayor).

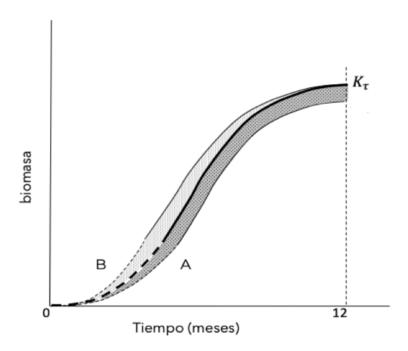


Figura 1 Representación de la pesca secuencial basado en el modelo dinámico de acumulación de biomasa. Línea central representa el patrón promedio con la línea punteada reflejando la biomasa de la población disponible a la pesca por la flota menor y la continua a la flota industrial. las áreas sombreadas representan la proporción de biomasa al que accede la flota menor (área B) e industrial (área A). K_{τ} representa la biomasa acumulada a lo largo del año.

El problema es que esto no ocurre así y lo que tenemos desde los datos de captura y esfuerzo es el esquema de una pesquería con dos flotas que compiten por un recurso. Este es un ejemplo para una temporada de camarón azul (2018-2019)

Cama	rón azul	Captura ribereña	dias de pesca ribereña	captura por día (ribereña)	Captura industrial	dias de pesca industrial	captura por día (industrial)
	sep	4,081,038	2,986	1,367	93,574	206	454
2018	oct	2,814,703	3,913	719	421,846	1,885	224
2010	nov	1,957,977	3,447	568	100,398	865	116
	dic	1,289,104	2,926	441	65,287	737	89
	ene	1,190,071	2,382	500	35,884	515	70
	feb	913,297	1,914	477	34,494	606	57
	mar	797,401	1,401	569	33,050	435	76
2019	abr	23,225	35	664			
2019	may	36,000	30	1,200			
	jun						
	jul						
	ago						

Habíamos comentado iniciar con camarón azul pero dado el esquema anterior hubo que revisar también camarón café y blanco, y es igual (también para temporada 2018-2019).

Cama	rón azul	Captura ribereña	dias de pesca ribereña	captura por día (ribereña)	Captura industrial	dias de pesca industrial	captura por día (industrial)
	sep	190,874	151	1,264	43,766	158	277
	oct	431,629	365	1,183	564,168	2,541	222
	nov	123,153	191	645	287,953	1,637	176
	dic	127,434	207	616	121,636	1,031	118
	ene	253,462	464	546	84,250	909	93
	feb	218,284	444	492	75,527	992	76
	mar	211,228	328	644	89,033	654	136
Camaro	ón blanco	Captura ribereña	dias de pesca ribereña	captura por día (ribereña)	Captura industrial	dias de pesca industrial	captura por día (industrial)
	sep	14,284	11	1,299			
	oct	32,400	69	470	5,891	149	40
	nov	30,783	78	395	7,194	216	33
	dic	23,512	63	373	2,653	149	18
	ene				490	87	6
	feb				432	98	4

No es problema modelar dos flotas que participan en una pesquería, pero este concepto se basa en la idea de que la estructura de la captura (por tamaños) es similar para ambas flotas; y en nuestro caso se sabe que no lo es. Lo que se quiere decir es que los datos en si mismos no revelan la secuencialidad.

Lo que si es posible hacer (hasta esta etapa) es estimar el modelo global de acumulación de biomasa e identificar el estado de explotación del recurso. Abajo, en gráficas, pueden ver un ejemplo de esto para una temporada de pesca (2018-2019) de camarón azul.

i) estandarización del esfuerzo de pesca (temporada 2018-2019).

Se estandariza el esfuerzo de pesca de flota menor. Se asume que las dos flotas están operando sobre el mismo recurso simultáneamente. Ante esto, si su poder de pesca fuera similar la pendiente de la relación lineal entre U_{men} vs. U_{ind} sería la unidad (U = captura por unidad de esfuerzo); y si es diferente a la unidad, la pendiente que resulte será el factor de conversión entre una y otra; esto es, se estandariza la unidad de esfuerzo de una flota en términos de la otra flota. Aquí se estandarizó en términos de U_{ind} (o sea $U_{men_st} = a + b \cdot U_{ind}$, representa la U en términos de unidades de esfuerzo de la flota industrial).

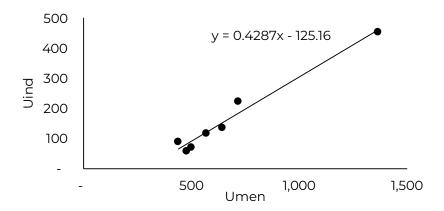


Figura 2. Identificación del factor de estandarización del esfuerzo de pesca para las flotas camaroneras menor y mayor. U representa la captura por unidad de esfuerzo; men = flota menor, ind = flota industrial.

ii) estimación de capturabilidad (temporada 2018-2019)

Con las series de datos mensuales de U por flota de la temporada se estimó el coeficiente de capturabilidad por flota (usando U_{ind} y U_{men_st}) con el método de Leslie y se obtuvieron los valores siguientes

 $q_{men} = 0.00004, y q_{ind} = 0.0006$

Figura 3. Ejemplo de la estimación de capturabilidad y abundancia relativa (y eventualmente biomasa) en el tiempo inmediato anterior a iniciarse la temporada de pesca (pendiente y ordenada al origen, respectivamente). El ejemplo es para la flota menor de la temporada 2918-2019.

iii) estimaciones de biomasa y estado de explotación (temporada 2018-2019)

Con los valores anteriores se estimó la biomasa como B = U/q, por flota y después la suma de las dos para la población total.

Con esto esta información se obtuvo la tendencia de la biomasa en el tiempo a lo largo de la temporada de pesca, y la tasa de cosecha $HR = {}^{C}/_{R}$.

La biomasa total (suma de los meses y flotas) fue $B_{\tau}=30,543~ton$; y una tasa de cosecha global HR=0.453 (al estimar HR mes a mes y obtener un promedio mensual el estimador resulta en $HR_{pm}=0.517$). (el valor en rojo corresponde al promedio de la figura)

Finalmente se estimaron los parámetros del modelo de acumulación de biomasa:

$$B_{\tau} = B_{t=1} + \sum_{t=2}^{t=7} \left[\gamma_{\tau} B_t - \gamma_{\tau} B_t \left(\frac{B_t}{B_{\tau}} \right) \right]$$
 ecuación (1)

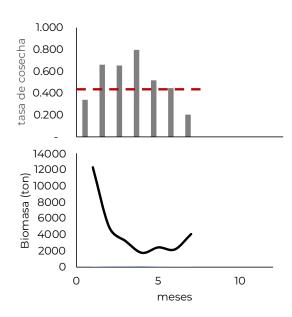


Figura 4. Parte superior, tasa de cosecha mensual ($HR_t = C_t/B_t$) mostrando el promedio a lo largo de la temporada (línea punteada). Abajo, evolución de la biomasa a lo largo de la temporada de pesca (septiembre a marzo).

Donde B_{τ} corresponde a la capacidad de carga del año τ , y γ_{τ} es la tasa intrínseca de crecimiento de la población en el mismo año τ . Los valores estimados fueron $B_{\tau}=30,158$ ton; y de $\gamma_{\tau}=0.520$ ton/año (representado en la siguiente figura (puntos son los valores de B_{t} y la línea es la estimación del modelo

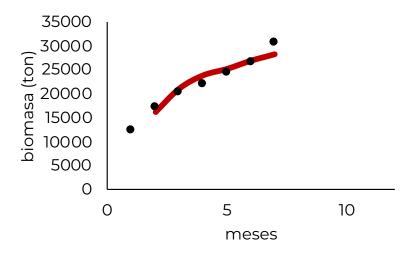


Figura 4. Ajuste del modelo de acumulación de biomasa (ecuación 1) a datos estimados de la temporada de pesca 2028-2019.

Nótese que la biomasa estimada a partir de la relación $B={}^{U}/q$ con respecto a la estimada por el modelo son muy similares. La tasa de cosecha estimada con estos valores (captura acumulada del año y biomasa acumulada del año es: $HR={}^{C_{total}}/{}_{B_{\tau}}=0.459$.

La conclusión en este sentido es que el recurso se está siendo explotando a un nivel muy cercano a su máxima capacidad de producción.

Información disponible

Las estimaciones anteriores fueron para una temporada de pesca de camarón azul, habiéndose estimado también para una temporada de los camarones café y blanco como exploración al análisis del comportamiento de los datos. Lo que habrá que hacer es obtener los estimados correspondientes a las temporadas de pesca disponibles, lo cual se muestra en la tabla siguiente.

datos de Ca	ptura y	Esfuerz	o útiles
temporada	AZUL	CAFÉ	BLCO.
2000-2001			
2001-2002			
2002-2003			
2003-2004			
2004-2005			
2005-2006			
2006-2007			
2007-2008			
2008-2009			
2009-2010			
2010-2011			
2011-2012			
2012-2013			
2013-2014			
2014-2015			
2015-2016			
2016-2017			
2017-2018			
2018-2019			
2019-2020			
2020-2021			

Las áreas en gris muestran los años donde no hay datos o no son suficientes para un análisis; azul claro hay información solo para una de las flotas; y azul oscuro hay información consistente para realizar estimaciones como se hicieron en el ejemplo de arriba. En conclusión, para camarones azul y café, se obtendrán estimados de 16 temporadas de pesca; mientras que para camarón blanco solo 4 temporadas de pesca.

Al realizar las estimaciones correspondientes de B_{τ} y γ_{τ} para las temporadas de pesca disponibles, se estudiará la posible relación del patrón de variación en el tiempo que muestren con patrones de variación climáticos. La idea es identificar, si la hay, que parte de la variación de la biomasa (o capacidad de carga) es explicada por los cambios en los patrones climáticos. Esto será información importante a considerar en las medidas de manejo y toma de decisiones.

2) sobre la no asociación de información de la distribución de frecuencias de tallas con las capturas, para estimar tasa de reclutamiento

La idea propuesta inicialmente era estimar la tasa de reclutamiento (poblacional y la tasa de "escape" de una flota a la siguiente en la pesca secuencial) usando información de frecuencia de longitudes (recopiladas de documentos técnicos) y las capturas y esfuerzos correspondientes (de avisos de arribo). Hay dos problemas en este caso, i) no hay información, correspondiente en tiempo, de datos de distribución de frecuencia de

longitudes, DFL, y estadísticas de captura; y ii) Cuando hay coincidencia de DFL con registros de captura, el número de meses es insuficiente. Bajo esta situación no hay manera de estimar el reclutamiento. La tabla siguiente muestra que información esta accesible, y entre paréntesis los meses de disponibilidad de datos de frecuencia de tallas.

información		ble					
AVISOS DE A	ARRIBO						
datos de Ca	ptura y	Esfuerz	o útiles	Sor	nora	Sina	aloa
temporada	AZUL	CAFÉ	BLCO.	ag-Int	altamar	ag-Int	altamar
2000-2001							
2001-2002							
2002-2003							
2003-2004							
2004-2005							
2005-2006				jul-ago			jul
2006-2007							
2007-2008					oct-feb (5)		
2008-2009				jul-ago	jul - ene (5)	jul - oct (2)	jul - ene (4)
2009-2010				may-ago	jul-ago	mar-oct (2)	oct-ene (4)
2010-2011							
2011-2012							
2012-2013				jul-ago	jul-ago		jul-ago
2013-2014					ago		jul-ago
2014-2015				jul-ago	jul-ago	may-ago	jul-ago
2015-2016							
2016-2017				jun-ago			
2017-2018							
2018-2019							
2019-2020							
2020-2021							
	datos p	/ amba	s flotas				
	solo flo	ta men	or				

i) exploración alternativa para estimar la tasa de reclutamiento.

Para intentar resolver el problema de reclutamiento (para ambos, población y escape), se estimará el número de individuos en las capturas de las flotas menor e industrial con la intención de obtener una idea de los números de individuos en el mes de reclutamiento y de reproductores para los meses identificados a través de la literatura (incluso estimados a través de la tasa de decaimiento mensual).

Como no hay correspondencia directa (para el mismo año y mes) de datos de distribución de frecuencia de longitudes, DFL, con datos de capturas, se buscará construir al menos un año promedio de DFL. Con ese año promedio se estimarán los números de individuos en las capturas de ambas flotas para las diferentes temporadas de pesca. Con el número de individuos del mes donde haya tallas más pequeñas (más jóvenes) y el número de adultos reproductores se intentará estimar las tasas de

reclutamiento y escape $\langle TRec|TEsc\rangle=\ln\left(Ln\binom{R_i}{A_i}+1\right)$, donde i representa cualquiera de las dos situaciones, reclutamiento biológico o escape.

Por ejemplo, para año 2016, en Sinaloa, hay datos para otros cuerpos de agua interiores / ribera.

	Siste	ema La	guna	ar de S	anta N	1aría L	a Refo	rma		F	lltama	r
mar	abr	may	jun	jul	ago	sep	oct	nov	dic	oct	nov	dic
				0.016								
				0.016								
				0.034								
				0.066								
				0.083	0.009							
				0.051	0.012							
				0.084	0.027	0.013						
				0.116	0.067	0.013						
				0.084	0.090	0.022						
				0.117	0.105	0.038	0.013					
				0.100	0.104	0.053	0.013					
				0.049	0.073	0.046	0.020	0.011				
				0.049	0.087	0.075	0.034	0.018	0.020			
				0.015	0.068	0.071	0.034	0.022	0.015			
				0.016	0.057	0.110	0.058	0.033	0.039			
				0.017	0.057	0.115	0.070	0.058	0.059			0.004
				0.050	0.068	0.135	0.069	0.101	0.089			0.016
	0.020			0.017	0.050	0.094	0.104	0.126	0.110	0.016	0.011	0.028
				0.018	0.051	0.083	0.139	0.162	0.107	0.044	0.035	0.044
		0.060			0.044	0.059	0.177	0.203	0.135	0.083	0.064	0.080
					0.020	0.040	0.136	0.137	0.156	0.122	0.093	0.117
	0.030	0.060			0.010	0.025	0.064	0.072	0.136	0.134	0.094	0.114
0.034		0.116				0.008	0.037	0.042	0.090	0.146	0.095	0.112
0.103	0.029	0.059					0.017	0.015	0.033	0.201	0.159	0.166
0.261	0.055	0.060					0.017		0.012	0.102	0.099	0.111
0.184	0.133	0.060								0.066	0.094	0.099
0.184	0.202	0.060								0.041	0.062	0.061
0.103	0.182	0.175								0.016	0.031	0.022
0.096	0.114	0.058								0.013	0.037	0.013
0.035	0.135									0.009	0.035	0.008
	0.070	0.058								0.004	0.032	0.004
	0.030	0.116								0.004	0.023	
		0.060									0.017	
		0.061									0.012	
											0.006	

y para Sonora

	bahía			altamar	
sep	oct	nov	oct	nov	dic
	0.031				
	0.067				
	0.082				
	0.047				
	0.025				
	0.020				
0.006	0.015				
0.014					
0.022	0.067				
0.064	0.116				
0.122	0.168			, and the second	
0.239	0.166	0.021			
0.305		0.091			
0.184		0.300			
0.036		0.339			
0.007		0.190			
	0.003	0.050			
		0.009	0.003		
			0.007		
			0.010		
			0.013	0.009	0.009
			0.059	0.033	0.036
			0.102	0.047	0.066
			0.145	0.061	0.097
			0.152	0.073	0.111
			0.159	0.084	0.124
			0.154	0.156	0.174
			0.116	0.140	0.116
			0.035	0.132	0.087
			0.024	0.110	0.072
			0.013	0.088	0.056
			0.005	0.029	0.023
				0.021	0.017
				0.013	0.011
				-	
				-	
				0.006	

Los datos de marzo a mayo de aguas interiores de Sinaloa, si se colocan a la derecha (después de diciembre) se obtendrá un esquema promedio del desarrollo de los individuos en la población desde que ingresan a la fase explotada de la población. Si estos datos se llevan a número en las capturas podrá estimarse los números a nivel de población. No hay información de este tipo para años sucesivos. Debe de notarse también que esta temporada de pesca es excepcional, en general solo se tienen datos para 7 meses.

Para tener la proporción real del número de individuos entre los meses (pasar de la DFL a la estructura de la captura) habrá que estimar la capturabilidad (que sería diferente a la estimada anteriormente, donde se usaron datos de biomasa). Con ello, y los datos de esfuerzo, se podría obtener un estimado del tamaño de la población y su estructura. Si esto resulta y se toman esas DFL y se asume una estructura similar para todos los años, podrá obtenerse estas estimaciones para las temporadas de pesca disponibles. ¿Porque este supuesto y no usar la información disponible?

En la tabla siguiente se presentan los datos disponibles de DFL para diferentes años, localidad pesquera y meses. Nótese que 2016 hay información para varios meses y localidades (con flecha roja se señalan los datos mostrados para Sonora y Sinaloa arriba).

SONORA					
	ZONA	AÑO	MES INI	MES FIN	num meses
	altamar	2015	oct	nov	2
	\rightarrow	2016	oct	dic	3
		2008	sep	ene	5
		2011	feb		1
		2015	feb		1
		2007	oct	feb	5
	bahia	2016	sep	nov	3
INALOA	Aguas protegidas	2016	sep	dic	4
		2009	mar	oct	8
	bahía	2008	sep	nov	3
	ribera	2008	sep	oct	2
		2015	sep	dic	4
	Navachiste. Bahía	2015	feb	dic	11
		2014	mar	dic	10
		2016	mar	dic	10
		2017	mar	dic	10
	Navachiste Ribera	2015	feb	dic	n
		2014	mar	dic	10
		2016	abr	nov	8
	Topolobampo.Ribera	2015	feb	dic	11
		2014	abr	dic	9
		2016	mar	dic	10
		2017	mar	dic	10
	StaMa LaRef.Ribera	2009	mar	dic	10
		2017	mar	dic	10
		2016	mar	sep	7
		2014	mar	nov	9
		2014	abr	ago	6
	StaMa LaRef.SistLagunar	2014	mar	nov	9
	\rightarrow	2016	mar	dic	10
		2017	mar	dic	10
	Pabellon_Altata Ribera	2017	abr	oct	8
	Pabellon_SistLagunar	2017	mar	dic	10
		2014	mar	nov	9
	altamar	2016	oct	dic	3
		2008	sep	ene	5
		2009	oct	ene	4

El siguiente año con mayor información es 2008 donde, para Sinaloa, hay datos para solo 5 meses (entre septiembre y enero, 5 para altamar y 3 meses, coincidentes con los anteriores, para aguas interiores). Para Sonora no hay información para flota menor. Para algunos años, para aguas interiores, hay 10 meses de datos de DFL, pero corresponden a años donde solo hay datos para Sinaloa y no para Sonora; y por ejemplo, para 2015, que en aguas interiores de Sinaloa hay DFL para 11 meses, pero no hay información de altamar para ese estado y para Sonora solo 2 meses.

Lo que se trata de explicar con todo esto es la imposibilidad de tener varios años con datos completos para el análisis de reclutamiento año tras año; por ello, la idea de ubicar un año real y usarlo de promedio asumiendo una estructura estable de DFL de las capturas sería de interés. Se intentará obtener al menos un año promedio y si fuera posible algún otro(s) más.

Este análisis de disponibilidad de información para análisis del reclutamiento se ha hecho, hasta el presente momento, solo para camarón azul. Se prevé que ocurra algo similar con camarón café, pero para camarón blanco aún es incierto por la poca cantidad de información disponible.

Un aspecto a señalar, que no se podrá abordar hasta tener la información de frecuencia de tallas y número de individuos en las capturas como diferenciar la información para la estimación de la tasa de escape (en la pesca secuencial) que permita expresar un estimador de interacción entre las flotas que controla el balance de la secuencialidad. Una vez desglosados los datos a número de individuos de la captura se estará en posibilidad de evaluar dicha interdependencia entre las flotas.

Análisis basado en datos de captura y esfuerzo

Para el análisis de las diferentes temporadas de pesca se siguió el proceso ejemplificado anteriormente con la temporada 2018-2019. Así, se estimó para cada temporada de pesca la capturabilidad, la cual se supuso constante para cada temporada, y se empleó para estimar la biomasa mensual disponible, correspondiente a la captura por unidad de esfuerzo de cada flota. La biomasa total mensual simplemente resultó de la suma de las estimaciones por flota. De estas biomasas estimadas se obtuvieron los parámetros del modelo de acumulación de biomasa (anexo 1) de acuerdo a la ecuación 1. Así mismo, de los datos de Captura y Biomasa estimada mensual, se estimó la tasa de cosecha, de acuerdo con la relación $HR_t = C_t/B_t$.

Los patrones del esfuerzo de pesca por flota se muestran en la figura 5;

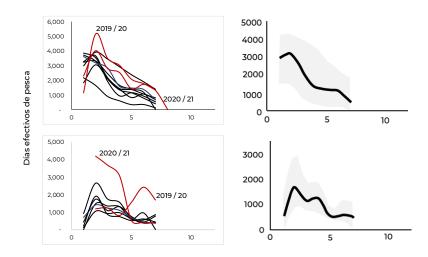
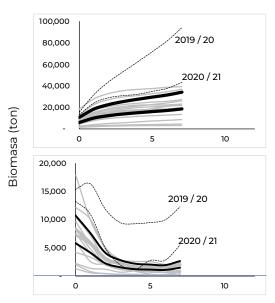



Figura 5. Izquierda, variación del esfuerzo de pesca para las flotas menos (arriba) e industrial (abajo) para las diferentes temporadas de pesca, mostrando el patrón general y su espectro de variación (derecha).

De acuerdo con esto, la figura 5 muestra las tendencias de las biomasas acumuladas y las estimaciones de la evolución de biomasa, ambas por mes y por temporada de pesca.

Meses temporada de pesca (septiembre - marzo)

Figura 6. Arriba, tendencias de las biomasas acumuladas a lo largo de las diferentes temporadas de pesca. Abajo, la evolución de las biomasas. En ambos casos las líneas negras gruesas representas el intervalo de variación de la media mas-menos una desviación estándar. Las líneas punteadas representan las temporadas 2019-2020 y 2020-2021, cuyo comportamiento es anormal como consecuencia de la contingencia de COVID-19.

Estado de la pesquería

Para definir el estado de la pesquería se emplearon varios criterios que se explican a continuación:

 B_{mar} biomasa existente en el mes de marzo¹, reflejando la biomasa remanente en el mar al final de la temporada de pesca

 B_{∞} biomasa total acumulada al final de la temporada de pesca

 $B_{
m 0}$ biomasa estimada justo en el tiempo inmediato anterior an inicio de la temporada de pesca

 $Ln[(B_{mar,t}/B_{0,t+1})+1]$ representa la tasa de reclutamiento al relacionar la biomasa remanente en el mar al final de la temporada de pesca (que se sabe son adultos reproductores), con la biomasa justo en el mes previo al inicio de la temporada que se sabe dominan los individuos juveniles grandes).

 $Ln[(B_{mar,t}/B_{\infty,t})+1]$ representa la tasa de supervivencia como proporción de la biomasa en el mes de marzo (último de la temporada de pesca) con respecto a la biomasa acumulada al final de la temporada, también registrada en el mes de marzo. Ambas cantidades corresponden a la misma temporada de pesca.

HR=C/B=0.50 Representa la tasa de cosecha promedio de la temporada de pesca. El nivel de 0.5 corresponde a la tasa límite cuando, después de la pesca queda en el mar el 50% de la población disponible suponiéndose que esa biomasa remanente es capaz de reponer exactamente la cantidad de biomasa removida.

HR=C/B=0.43 Representa la tasa de cosecha límite sugerida a través del PRBLE (punto de referencia biológico del ecosistema, tomado de Arreguín-Sánchez et al. 2017)

De las cantidades anteriores se construyó un diagrama de Kobe para identificar la trayectoria de la pesquería y su condición. Para ello se

¹ Esta biomasa se refiere a la biomasa en el último mes de la temporada de pesca; podría proyectarse la biomasa en el mes de abril pero por el momento se conserva este criterio con un sentido precautorio.

relaciona la intensidad de pesca, expresado por la tasa de cosecha, con un indicador de la población que debe de quedar en el mar después de la pesca para garantizar la persistencia de la población. De manera particular, la identificación del criterio límite para la definicion de estado del recurso temporada tras temporada se basa en el balance entre la tasa de reclutamiento, como indicador del estado de la población; como la tasa de supervivencia que define el efecto de la pesca en los cambios de abundancia. La figura 7 muestra la relación entre estas dos variables en la cual se propone que el cruce de ellas sobre la bisectriz representa el nivel de reemplazamiento, el cual se sugiere represente el nivel de referencia en el diagrama de Kobe.

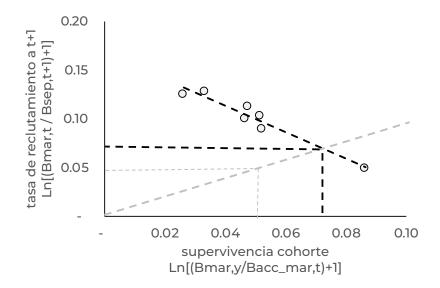


Figura 7. Relación entre las tasas de supervivencia y reclutamiento (línea punteada en negro). La línea gris define la bisectriz que representa el nivel de substitución a lo largo de diferentes estados hipotéticos de la población y la pesquería. El punto de cruce defineel nivel de reemplazamiento como resultado de la condición de la pesquería y el recurso en diferentes temporadas.

El nivel de reemplazamiento definido en el gráfico 7, se puede representar a través de la relación B_{mar}/B_{∞} ; representando finalmente la proporción de la población que debe quedar en el mar al final de la temporada con respecto a la biomasa total, representada or la biomasa acumulada a lo largo del año.

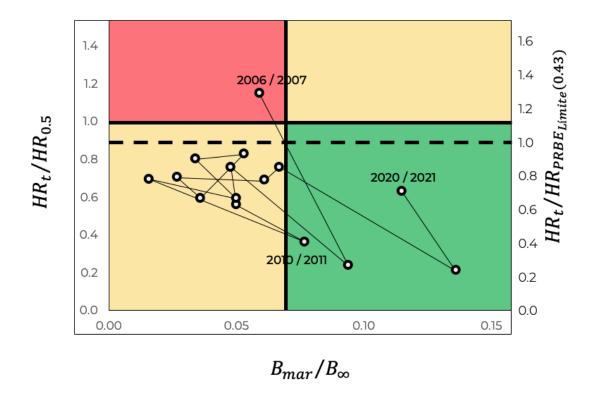


Figura 8 Diagrama de Kobe representando el estado del recurso y la pesquería de camarón. RH_t representa el estado de explotación actual; $RH_{0.5}$ y $RH_{0.43}$ representan estados de explotación definidos arriba (ver texto). B_{mar}/B_{∞} representa el nivel de población que debe quedar en el mar después de la pesca para reponer las pérdidas de la población. La línea horizontal negra continua, representa la razón el límite de explotación $HR_t/HR_{0.5}$; mientras que la línea punteada representa el límite referido al ecosistema, $HR_t/HR_{PRBE_{Límite}(0.43)}$. En sentido vertical, la línea negra continua representa el nivel de referencia de la población.

De acuerdo con la figura 8, la pesquería se encuentra operando, en lo general, bajo una condición aceptables, no previéndose riesgos mientras no incrementen las tasas de cosecha y se vigilen los niveles de escape después de la temporada de pesca; esto es, la biomasa al final de la temporada debe de ser menor a $0.065\,B_0$.

1,199	2006 3006	2007 2008	2008 2008	0100 0000	2010 2011	2011 2012	2012 2013	2012 2014	2017 2015	2015 2016	7116 2017	2017 2018	2018 2019	2019 2020	1000000
1,348 777 3,24 2,544 4,79 3,970 5,618 4,72 2,523 5,418 7,05 9,97 1,6350 1,119 1,180 1,	1,306	2,199	7000	4,100	70.10	17,879	7,511	9,607	8,262	7,367	70.10	10,377	12,196	15,370	13,215
1,186 397 1087 2,166 4979 1943 3,170 2,283 1,389 2,489 2	540			3,247		9,791	3,970	5,618	4,720	5,753		7,051		16,350	10,910
STATE STAT	411			1,876		4,979	1,943	3,170	2,174	2,673		2,827		11,836	4,947
914 313 894 2580 1,276 1,164 1,285 831 1,564 967 1,173 1,315 9,245 638 237 573 2,073 1,177 895 143 354 776 760 1,109 1,77 9,466 781 206 634 2,137 615 983 775 1,008 770 503 1,621 2,412 781 206 634 2,137 615 983 775 1,008 770 503 1,621 2,412 781 206 634 2,137 615 983 775 1,008 770 503 1,621 2,412 781 2,073 2,073 2,073 2,137	212			1,082		2,776	1,261	2,212	1,439	2,283		2,168		9,442	1,9
181 611 2,549 774 895 143 354 775 1,109 1,109 1,197 9,466 181 206 634 2,137 615 983 775 1,008 770 503 1,671 1,581 9,977 181 206 634 2,137 615 983 775 1,008 770 503 1,671 1,268 181 206 604 2,137 615 983 775 1,008 770 503 1,671 1,268 181 206 2009 2010 2010 2011 2011 2012 2012 2013 2014 2014 2015 2015 2016 2015 2017 2013 2014 2014 2015 2015 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014	173			894		1,276	1,164	1,285	831	1,564		1,173		9,245	1,1
Fig. 10 Fig.	70			601		774	895	143	354	745		1,109		9,466	2,7
781 206 634 2,137 615 983 775 1,008 770 503 1,621 2,412 12,268 1,621 2,412 1,268 1,621 2,412 1,268 1,621 2,412 1,268 1,621 2,412 1,268 1,621 1,6	22			573		1,187	292	53	285	537	681	717		9,927	2,777
12,268 13,007 2009 2010 2010 2011 2011 2012 2013 2013 2014 2014 2015 2015 2015 2015 2015 2019 2020 2020 2020 2020 2020 2020 2020 2	168			634		615	983	775	1,008	770	503	1,621			
2007 2008 2009 2010 2010 2011 2011 2012 2013 2013 2014 2014 2015 2016 2016 2017 2017 2018 2018 2019 2020 2020 2020 2009 2010 2010 2011 2011														12,268	5,494
lacion tasa de cosecha (2007 2008 2009) 2010 2011 2011 2012 2013 2013 2014 2014 2015 2016 2016 2017 2017 2018 2018 2019 2020 2020 2020 2020 2020 2020 2020															
Scott 2008															
2007 2008 2009 2009 2010 2010 2011 2011 2012 2013 2013 2014 2015 2015 2016 2016 2017 2017 2018 2018 2019 2020 2020 2020 2020 2020 2020 2020															
2007 2008 2008 2009 2010 2010 2011 2011 2012 2013 2013 2014 2014 2015 2015 2016 2016 2017 2017 2018 2018 2019 2020 2020 2020 2															
2007 2008 2009 2009 2010 2011 2011 2011 2011 2011 2011 2012 2012 2013 2014 2015 2014 2015 2016 2017 2017 2018 2018 2019 2020<	Biomasa tot.	al acumulada													
2,199 1,911 4,100 6,045 17,879 7,511 9,607 8,262 7,367 7,113 10,377 12,196 15,370 3,547 2,678 1,347 8,593 27,670 11,480 15,224 12,982 13,120 12,531 17,428 22,173 31,720 4,733 3,075 9,223 10,759 32,648 13,424 18,394 15,155 15,793 14,612 20,255 26,883 43,557 5,407 3,382 10,306 13,433 35,425 14,684 20,606 16,594 18,077 16,001 22,424 29,352 52,999 26,325 11,800 18,562 37,474 16,743 22,034 17,779 20,386 17,728 24,706 32,464 71,710 7,876 4,113 12,373 20,635 38,662 17,310 22,087 18,064 20,923 18,409 25,423 34,045 81,637 8,657 4,319 13,007 22,772 39,276 18,293 22,862 19,071 21,693 18,912 27,044 36,458 93,905 acidin tasa de cosecha	2006 2007	2007 2008	2008 2009	2009 2010	2010 2011	2011 2012	2012 2013	2013 2014	2014 2015	2015 2016	2016 2017	2017 2018	2018 2019	2019 2020	2020 2021
3,547 2,678 7,347 8,593 27,670 11,480 15,224 12,982 13,120 17,428 22,173 31,720 4,733 3,075 9,223 10,759 32,648 13,444 18,394 15,155 15,793 14,612 20,255 26,883 43,527 5,407 3,885 10,366 16,594 18,007 16,001 22,424 29,352 52,999 6,322 3,695 11,809 16,013 36,701 15,848 21,891 17,779 20,404 16,023 30,667 62,243 7,238 3,876 4,113 12,373 20,635 38,662 17,310 22,034 17,728 20,923 18,409 25,423 34,045 81,637 8,657 4,319 13,007 22,772 39,276 18,293 22,862 19,071 21,693 18,912 27,044 36,458 93,905 1ación tasa de cosecha Appendix Ap	1,306			4,100	6,045	17,879	7,511	9,607	8,262	7,367	7,113	10,377		15,370	13,215
4,733 3,075 9,223 10,759 32,648 13,424 18,394 15,155 15,793 14,612 20,255 26,883 43,557 5,407 3,382 10,306 13,433 35,425 14,684 20,606 16,594 18,077 16,001 22,424 29,352 52,999 6,322 3,695 11,199 16,001 36,747 16,701 12,244 29,352 52,999 7,238 3,876 11,800 18,584 21,891 17,779 20,386 17,779 20,386 17,779 32,494 31,710 7,876 4,113 12,373 20,655 38,662 17,310 22,087 18,064 20,923 18,409 25,423 34,045 81,637 8,657 4,319 13,007 22,772 39,276 18,293 22,862 19,071 21,693 18,912 27,044 36,458 93,905 action tasa de cosecha	1,846			7,347	8,593	27,670	11,480	15,224	12,982	13,120	12,531	17,428		31,720	24,125
5,407 3,382 10,306 13,433 35,425 14,684 20,606 16,594 18,077 16,001 22,424 29,352 52,999 6,322 3,695 11,199 16,013 36,701 15,848 21,891 17,425 19,641 16,968 23,597 30,667 62,243 7,238 3,876 11,199 16,013 36,701 15,848 21,891 17,779 20,386 17,778 24,706 32,464 71,710 7,876 4,113 12,373 20,635 38,662 17,739 22,386 18,093 18,409 25,423 34,045 81,637 8,657 4,319 13,007 22,772 39,276 18,293 22,862 19,071 21,693 18,912 27,044 36,458 93,905 8,657 4,319 13,007 22,772 39,276 18,293 22,862 19,071 21,693 18,912 27,044 36,458 93,905 Air anal Captura anual Captura bliedad estuerzo de pesca	2,257			9,223	10,759	32,648	13,424	18,394	15,155	15,793	14,612			43,557	29,071
6,322 3,695 11,199 16,013 36,701 15,848 21,891 17,425 19,641 16,968 23,597 30,667 62,243 7,238 3,876 11,800 18,562 37,474 16,743 22,034 17,779 20,386 17,728 24,706 32,464 71,710 7,875 4,319 12,373 20,635 38,662 17,310 22,087 18,064 20,923 18,409 25,423 34,045 81,637 8,657 4,319 13,007 22,772 39,276 18,293 22,862 19,071 21,693 18,912 27,044 36,458 93,905 action tass de cosecha Captura anual captura bilidad esfuerzo de pesca	2,470			10,306	13,433	35,425	14,684	20,606	16,594	18,077	16,001		29,352	52,999	31,049
7,238 3,876 11,800 18,562 37,474 16,743 22,034 17,779 20,386 17,728 24,706 32,464 71,710 7,876 4,113 12,373 20,655 38,662 17,310 22,087 18,064 20,923 18,409 25,423 34,045 81,637 8,657 4,319 13,007 22,772 39,276 18,293 22,862 19,071 21,693 18,912 27,044 36,458 93,905 8,657 4,319 4,319 4,310 4,3	2,642			11,199	16,013	36,701	15,848	21,891	17,425	19,641	16,968		30,667	62,243	32,210
7,876 4,113 12,373 20,635 38,662 17,310 22,087 18,064 20,923 18,409 25,423 34,045 81,637 8,657 4,319 13,007 22,772 39,276 18,293 22,862 19,071 21,693 18,912 27,044 36,458 93,905 25,423 34,045 81,637 18,657 4,319 13,007 22,772 39,276 18,293 22,862 19,071 21,693 18,912 27,044 36,458 93,905 18,912	2,712			11,800	18,562	37,474	16,743	22,034	17,779	20,386	17,728		32,464	71,710	34,9
8,657 4,319 13,007 22,772 39,276 18,293 22,862 19,071 21,693 18,912 27,044 36,458 93,905 3,905 4 a signification de pesca Captura anual Captura anual	2,734			12,373	20,635	38,662	17,310	22,087	18,064	20,923	18,409		34,045	81,637	37,7
tasa de cosecha Captura anual captura bili dad	2,902			13,007	22,772	39,276	18,293	22,862	19,071	21,693	18,912		36,458	93,905	43,261
tasa de cosecha Captura anual capturabilidad															
tasa de cosecha Captura anual captura bili dad															
tasa de cosecha Captura anual captura bili dad															
tasa de cosecha Captura anual capturabilidad															
tasa de cosecha Captura anual capturabilidad															
tasa de cosecha Captura anual capturabilidad															
	qod	ación	tasa de cosec	cha		J	Captura anual		captura	bilidad	ð	sfuerzo de pes	sca		

	población	ón	tasa de cosecha	ha		J	Captura anual		capturabilidad	bilidad	est	esfuerzo de pesca	ø
temporada	L	Binf	HR_tot	HR_prom (mes)	HR media ponderada	menor	mayor	total	q menor	qmayor	esf_men	esf_may	esf:total
2006/2007	0.555	2854	0.575			1,189	479	1,668	0.002600	0.0022	1,927	1,251	
2007/2008	0.579	8310	0.119			983	51	1,034	0.000100	0.0022	8,590	534	
2008/2009	0.469	4253	0.379			1,306	333	1,638	0.000900	0.0030	3,329	1,105	
2009/2010	0.563	12704	0.279			2,803	832	3,635	0.000200	0.0005	13,615	5,470	
2010/2011	0.375	27858	0.181			3,766	345	4,111	0.000030	9000.0	30,018	4,494	
2011/2012	0.591	38807	0.347			11,191	2,430	13,621	0.000100	0.0004	36,520	8,820	
2012/2013	0.343	19511	0.295			4,459	938	5,397	0.000100	0.0004	25,205	7,311	
2013/2014	0.588	22819	0.400			8,338	806	9,145	0.000080	0.0007	43,792	6,261	
2014/2015	0.477	18999	0.413			7,112	772	7,884	0.000000	9000.0	52,861	6,580	
2015/2016	0.569	21399	0.297			5,988	465	6,453	0.000060	9000.0	54,404	5,682	
2016/2017	0.493	18817	0.352			6,415	248	6,663	0.000050	0.0003	87,936	4,384	
2017/2018	0.482	26613	0.343			8,619	662	9,281	0.000050	9000.0	74,833	5,872	
2018/2019	0.482	35829	0.379			13,044	785	13,828	0.000050	9000.0	97,244	5,249	
2019/2020	0.584	90134	0.105			9,338	477	9,815	0.000007	0.0002	154,014	8,929	
2020/2021	0.427	47583	0.314			12,070	1,516	13,586	0.000050	0.0002	98,212	12,220	110,432